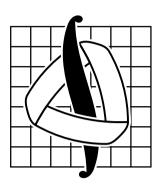
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет



Курс лекций по функциональному анализу

Лектор — Анатолий Михайлович Стёпин

III курс, 5 семестр, поток математиков

Оглавление

1.	$\Gamma_{\rm I}$	ильбер	товы пространства	5
	1.1.	Операт	горы в гильбертовых пространствах	5
		1.1.1.	Основное понятие	5
		1.1.2.	Сопряжённые операторы	5
		1.1.3.	Лемма об ортогональной проекции и её следствия	5
		1.1.4.	Общий вид линейного функционала в гильбертовом пространстве	6
		1.1.5.	Ортонормированные системы	6
	1.2.		ральная теорема	8
		1.2.1.		8
		1.2.2.	Спектральный радиус оператора и его оценка сверху	8
		1.2.3.	Общий вид функционала на пространстве непрерывных функций	9
		1.2.4.		.0
2.	\mathbf{K}	омпакт	тные операторы	0
	2.1.	Компа	1 1 1	0
		2.1.1.	Определение и свойства компактных операторов	0
		2.1.2.	Слабая сходимость и слабая компактность	2
		2.1.3.	Классификация точек спектра	.3
		2.1.4.	Сохранение непрерывного спектра при компактном возмущении	.3
	2.2.	Компа		4
		2.2.1.	Теорема Гильберта – Шмидта	4
		2.2.2.	Интегральные операторы Гильберта – Шмидта	6
_		_		
3.			еские и топологические пространства 1	
	3.1.		1 1	7
		3.1.1.	ı v	7
		3.1.2.		7
	3.2.	-	1 1	9
		3.2.1.		.9
		3.2.2.		9
		3.2.3.		20
		3.2.4.		20
		3.2.5.	Компактные метрические пространства	21
4.	н	ормиро	ованные и банаховы пространства	2
			ные функционалы и операторы	
	1.1.			22
		4.1.2.		22
		4.1.3.	1 1 1	22
		4.1.4.	· · · · · · · · · · · · · · · · · · ·	23
		4.1.5.		24
		4.1.6.		24
		4.1.7.		24
		4.1.8.		24
		4.1.9.		25
				26
				26
				28
				28
				28
	4.2.			28
		4.2.1.		28
		4.2.2.		29
	4.3.			30
		4.3.1.		3 0
		4.3.2.		31
		4.3.3.		34

	4.3.4.	Частный случай: гильбертовы пространства
. п	риложе	ение
5.1.	Service	Pack 1 (Миша Берштейн, Миша Левин)
5.2.	Service	Pack 2 (Юра Малыхин)
	5.2.1.	Теорема Хана – Банаха
	5.2.2.	Спектральная теорема
	5.2.3.	Теорема Ф. Рисса
	5.2.4.	Теорема о компактном возмущении
5.3.	Полезн	ые утверждения, примеры, факты
	5.3.1.	К теореме Банаха-Штейнгауза
	5.3.2.	К теореме Банаха об обратном операторе
	5.3.3.	Сопряжённый аналог ТБШ
5.4.	Service	Раск 3 (Юра Притыкин)

Введение

Предисловие

Видишь, в этих строках Где-то спрятан обман А тут — сто теорем — Разыщи-ка его... А когда надоест, Забей на функан, Ботай дифгем, Ботай дифгем,

Убедительная просьба ко всем читателям: в случае обнаружения ошибок немедленно сообщайте авторам на dmvn@mccme.ru или загляните на http://dmvn.mexmat.net и посмотрите, где можно достать в настоящее время самих авторов. Все пожелания и предложения по поводу оформления и содержания документа будут обязательно приняты к сведению.

В этой версии исправлено ещё несколько опечаток, а также устранена неточность в следствии теоремы Рисса – Фишера. Также просим всех читателей обратить внимание на приложение к лекциям. В нём вы найдёте много интересного.

Слова благодарности

Огромное спасибо Юре Малыхину за обнаружение опечаток и устранение дефектов в доказательствах. В настоящее время от его многочисленных пакетов исправлений осталось не так уж много, а это весьма позитивно.

Почти все поправки от Миши Малинина была успешно внесены в документ. Его решение задачи про сжимающие отображения выиграло конкурс и было помещено в текст. Также добавлено решение задачи про вложенные шары, присланное Митей Гусевым. Исправлена неточность в определении гильбертова пространства, замеченная Колей Масловым.

Отдельная благодарность выносится Юре Притыкину за просвещение в области компактных операторов, Илье Питерскому за многочисленные замечания и поиск опечаток, а также Мише Берштейну и Мише Левину за одну очень полезную лемму.

Принятые в тексте соглашения и используемые сокращения

- 1° Следуя [1], топологические понятия обозначаются сокращениями соответствующих английских слов. Так, Int A множество внутренних точек множества A, Cl A замыкание множества A.
- $\mathbf{2}^{\circ}$ Область определения будем обозначать символом Dom (от английского domain).
- ${f 3}^\circ$ Пространства функций обозначаются жирными буквами: ${f VB}$ функции ограниченной вариации, ${f C}$ непрерывные, ${f B}$ ограниченные.
- 4° Пространства операторов и линейных функционалов мы иногда будем обозначать буквами вида $\mathscr{A}, \mathscr{B}, \mathscr{C}.$

Список литературы приведён здесь не случайно. Без этих книжек лекции были бы сборником ошибочно сформулированных и (не)доказанных теорем.

Литература

- [1] В. А. Рохлин, Д. Б. Фукс. *Начальный курс топологии.* М.: Наука, 1977.
- [2] А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа. М.: Наука, 1981.
- [3] Л. А. Люстерник, В. И. Соболев. Элементы функционального анализа. М.: Наука, 1965.
- [4] Э. Б. Винберг. Курс алгебры. М.: Факториал, 2002.
- [5] А. А. Кириллов, А. Д. Гвишиани. Теоремы и задачи функционального анализа. М.: Наука, 1988.
- [6] И. М. Глазман. Прямые методы качественного спектрального анализа сингулярных дифференциальных операторов. М.: Физматгиз, 1963.
- [7] Н.И. Ахиезер, И.М. Глазман. *Теория линейных операторов в гильбертовом пространстве*. М.: Физматгиз, 1963.

Последняя компиляция: 2 апреля 2010 г. Обновления документа— на сайтах http://dmvn.mexmat.net, http://dmvn.mexmat.ru. Об опечатках и неточностях пишите на dmvn@mccme.ru.

5 1.1.1. Основное понятие

1. Гильбертовы пространства

1.1. Операторы в гильбертовых пространствах

1.1.1. Основное понятие

Определение. Гильбертовым пространством называется бесконечномерное евклидово пространство, полное относительно нормы, задаваемой скалярным произведением: $\|x\| := \sqrt{(x,x)}$. Его мы обычно будем обозначать буквой H.

Задача 1.1. Проверить, что так заданная норма удовлетворяет всем аксиомам нормы.

1.1.2. Сопряжённые операторы

Определение. Пусть A — ограниченный оператор в H. Если оператор B таков, что (Ax,y)=(x,By) для всех $x,y\in H$, то B называется conpsнсённым к A и обозначается A^* . Если $A=A^*$, то A называется camoconpsнсённым.

Замечание. Существование оператора, сопряжённого к ограниченному, будет доказано позже.

Отношение сопряжённости является симметричным: если B сопряжён к A, то A сопряжён к B. Действительно, имеем

$$(Ax,y) = (x,By) \Leftrightarrow \overline{(Ax,y)} = \overline{(x,By)} \Leftrightarrow (By,x) = (y,Ax),$$

а это и означает, что оператор A сопряжён к B.

Утверждение 1.1. Имеет место соотношение $(A^*)^* = A$.

 \square По определению имеем для всех x,y

$$\begin{cases} (Ax, y) = (x, A^*y), \\ ((A^*)^*x, y) = (x, A^*y); \end{cases} \Rightarrow (Ax, y) = ((A^*)^*x, y) \Leftrightarrow ((A - (A^*)^*)x, y) = 0,$$

но из невырожденности скалярного произведения следует $(A - (A^*)^*)x = 0$ для всех x, поэтому $A = (A^*)^*$.

Утверждение 1.2. Оператор A^*A является самосопряжённым.

 \square Имеем $(ABx,y)=(Bx,A^*y)=(x,B^*A^*y),$ откуда $(AB)^*=B^*A^*.$ Поэтому $(A^*A)^*=A^*(A^*)^*=A^*A.$

Лемма 1.3 (Фундаментальное равенство). Имеет место равенство $||A^*A|| = ||A||^2$.

Покажем, что $\|A^*\| = \|A\|$. Действительно, $\|Ax\|^2 = (Ax,Ax) = (A^*Ax,x) \leqslant \|A^*A\| \cdot \|x\|^2$ по неравенству Коши – Буняковского. Перейдём к верхней грани по $\|x\| = 1$, получим $\|A\|^2 \leqslant \|A^*A\| \leqslant \|A^*\| \cdot \|A\|$, откуда $\|A\| \leqslant \|A^*\|$. Меняя в этих выкладках местами операторы A и A^* , получаем обратное неравенство.

Рассмотрим $||Ax||^2 = (Ax, Ax) = (A^*Ax, x) \le ||A^*A|| \cdot ||x||^2$. Снова переходя к верхней грани по ||x|| = 1, получим $||A||^2 \le ||A^*A|| \le ||A^*|| \cdot ||A|| = ||A||^2$. Значит, на самом деле, тут всюду равенства.

1.1.3. Лемма об ортогональной проекции и её следствия

Лемма 1.4 (Об ортогональной проекции). Пусть H_0 — замкнутое подпространство в H. Тогда для любого вектора $h \in H \setminus H_0$ найдётся единственный ближайший вектор из H_0 .

 \square Имеем $\rho(h, H_0) =: a > 0$ в силу того, что одно из этих множеств замкнуто, а второе компактно. Выберем последовательность $\{h_n\} \subset H_0$ так, чтобы $\rho(h_n, h) \to a$ при $n \to \infty$. Покажем, что $\{h_n\}$ фундаментальна. Нам понадобится тождество параллелограмма: «сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон». В силу этого тождества для достаточно больших n и m получаем

$$\|h_n - h_m\|^2 = 2\|h - h_n\|^2 + 2\|h - h_m\|^2 - 4\|h - \frac{h_n + h_m}{2}\|^2 \le 2(a^2 + \varepsilon) + 2(a^2 + \varepsilon) - 4a^2 = 4\varepsilon,$$

и тем самым фундаментальность установлена.

Далее, H_0 — замкнутое подпространство полного пространства, и потому оно полно. Следовательно, $\{h_n\}$ сходится к некоторому элементу $h_0 \in H_0$. По непрерывности имеем $\rho(h_n,h) \to \rho(h_0,h)$. С другой стороны, этот предел равен a в силу выбора h_n . Следовательно, $\rho(h_0,h) = a$.

Следствие 1.1. Пусть $H_0 \subset H$ — замкнутое подпространство. Всякий вектор $h \in H$ представим в виде $h = h_0 + g$, где $h_0 \in H_0$, а $g \in H_0^{\perp}$.

Пусть $x \in H_0$. По лемме, функция $d(x) := \|h - x\|^2$ достигает минимума на некотором векторе $h_0 \in H_0$. Поэтому функция $\varphi(t) := \|h - h_0 + tx\|^2$ имеет минимум при t = 0. Тогда $\varphi'(0) = 0$. Распишем скалярный

квадрат: $\varphi(t) = (h - h_0 + tx, h - h_0 + tx) = \|h - h_0\|^2 + 2t \operatorname{Re}(x, h - h_0) + t^2(x, x)$, поэтому $\varphi'(0) = 2 \operatorname{Re}(x, h - h_0) = 0$. Далее, вместо вектора x рассматривая вектор $i \cdot x$, получаем $\operatorname{Im}(x, h - h_0) = 0$. Следовательно, $(x, h - h_0) = 0$. Таким образом, всякий вектор $x \in H_0$ ортогонален вектору $h - h_0$, то есть $h - h_0 \in H_0^{\perp}$. Тождество $h = h_0 + (h - h_0)$, очевидно, является искомым разложением.

1.1.4. Общий вид линейного функционала в гильбертовом пространстве

Лемма 1.5 (Рисса). Пусть f — ограниченный функционал. Тогда найдётся вектор $h_0 \in H$, для которого $f(x) = (x, h_0)$.

 \square Если $f \equiv 0$, то доказывать нечего: берём $h_0 := 0$. Пусть теперь $f \neq 0$. Очевидно, ядро $K := \operatorname{Ker} f -$ замкнутое подпространство. Покажем, что $\dim K^{\perp} = 1$. Рассмотрим ненулевые вектора $h_1, h_2 \in K^{\perp}$. Рассмотрим вектор

$$v = f(h_1)h_2 - f(h_2)h_1.$$

С одной стороны, $v \in K^{\perp}$ как линейная комбинация векторов из K^{\perp} . С другой стороны, он лежит и в K, потому что $f(v) = f(h_1)f(h_2) - f(h_2)f(h_1) = 0$. Но $K \cap K^{\perp} = 0$, поэтому v = 0, следовательно вектора h_1 и h_2 пропорциональны.

Рассмотрим уравнение $f(x)=(x,\mu h_1)$, где μ — неизвестное. Определим его, подставив $x=h_1$: получим $F(h_1)=\overline{\mu}(h_1,h_1)$. Итак, μ найдено. Тогда для всякого $x\in K^\perp$ имеем $f(x)=(x,\mu h_1)$. В самом деле, $x=\lambda h_1$, поэтому

$$f(x) = f(\lambda h_1) = \lambda f(h_1) = \lambda(h_1, \mu h_1) = (\lambda h_1, \mu h_1) = (x, \mu h_1).$$

Аналогично, если $x \in K$, то равенство тоже верно: и слева, и справа получаем ноль. Но поскольку $H = K \oplus K^{\perp}$, по следствию из леммы об ортогональной проекции это верно и на всём пространстве.

Утверждение 1.6. Сопряжённый оператор существует.

 \square Пусть A — ограниченный линейный оператор в H. Зафиксируем $y \in H$ и рассмотрим функционал f(x) := (Ax, y). Линейность его очевидна, а ограниченность следует из неравенства Коши – Буняковского:

$$|(Ax, y)| \le ||Ax|| \cdot ||y|| \le ||A|| \cdot ||y|| \cdot ||x||$$
.

По лемме Рисса получаем $f(x) = (x, A^*y)$, где A^*y — обозначение для сопряжённого оператора, применённого к вектору y.

Проверим корректность определения. Пусть мы получили таким способом два вектора v_1 и v_2 . Для них имеем $(Ax,y)=(x,v_1)=(x,v_2)$, причём это верно для любого x. Таким образом, для всех x имеем $(x,v_1-v_2)=0$. Подставим $x=v_1-v_2$, получим $(v_1-v_2,v_1-v_2)=0$, откуда $v_1=v_2$.

Очевидно, что получаемый таким способом оператор будет линейным. Контрольный вопрос: а нужно ли доказывать его ограниченность? ■

1.1.5. Ортонормированные системы

Определение. ОНС называется *полной*, если её линейная оболочка всюду плотна в H.

Определение. Пусть $\{e_n\}$ — ОНС в H. Наилучшим приближением вектора $x \in H$ по системе $\{e_n\}$ порядка N называется число

$$E_N(x) := \inf_{\alpha_k} \left\| x - \sum_{k=1}^N \alpha_k e_k \right\|.$$

Теорема 1.7. Пусть $\{e_n\}$ — ОНС в Н. Тогда наилучшее приближение порядка N равно

$$E_N(x) = \left\| x - \sum_{k=1}^{N} (x, e_k) e_k \right\|.$$

 \Box Положим $c_k = (x, e_k)$. В силу ортонормированности системы имеем

$$\left\|x - \sum_{k=1}^{N} \alpha_k e_k\right\|^2 = \left(x - \sum_{k=1}^{N} \alpha_k e_k, x - \sum_{k=1}^{N} \alpha_k e_k\right) = \left\|x\right\|^2 - 2\operatorname{Re}\sum_{k=1}^{N} \overline{\alpha}_k c_k + \sum_{k=1}^{N} \left|\alpha_k\right|^2 \stackrel{!}{=} \left\|x\right\|^2 + \sum_{k=1}^{N} \left|\alpha_k - c_k\right|^2 - \sum_{k=1}^{N} \left|c_k\right|^2.$$

Проверка равенства, отмеченного знаком «!», предоставляется читателю. Из этой формулы видно, что выражение достигнет своего минимума, когда станет нулём второе слагаемое в последнем выражении. А это будет в точности тогда, когда $\alpha_k = c_k$. \blacksquare

Следствие 1.2 (Неравенство Бесселя).

$$\sum_{k=1}^{\infty} |(x, e_k)|^2 \le ||x||^2.$$

 \square Для конечных сумм это неравенство верно в силу только что доказанной теоремы, поскольку наилучшее приближение неотрицательно, и

$$E_N^2(x) + \sum_{k=1}^N |(x, e_k)|^2 = ||x||^2.$$

Ясно, что при переходе к пределу неравенство не испортится.

Теорема 1.8 (Рисса – Фишера). Пусть H — гильбертово пространство, $\{e_k\}$ — ОНС в нём, u $(c_k) \in \ell_2$. Тогда существует $h \in H$, для которого $(h, e_k) = c_k$. Иными словами, существует вектор с предписанными коэффициентами Фурье из ℓ_2 .

 \square Поищем h в виде суммы ряда $\sum c_k e_k$ и покажем, что этот ряд сходится. Рассмотрим $h_n := \sum_{k=1}^n c_k e_k$. Проверим фундаментальность последовательности $\{h_n\}$. Пусть m > n, тогда

$$||h_m - h_n||^2 = \left(\sum_{k=n+1}^m c_k e_k, \sum_{k=n+1}^m c_k e_k\right) \stackrel{!}{=} \sum_{k=n+1}^m |c_k|^2 \to 0$$

при $m, n \to \infty$ как кусок хвоста сходящегося ряда (ведь $(c_k) \in \ell_2$). Равенство, отмеченное «!», следует из ортонормированности системы $\{e_n\}$. В силу полноты пространства, последовательность h_n сходится к некоторому вектору $h \in H$. То, что вектор h имеет нужные коэффициенты Фурье, очевидно.

Утверждение 1.9 (Равенство Парсеваля). Пусть $\{e_n\}$ — полная ОНС в гильбертовом пространстве $H, \ a \ c_k := (h, e_k)$. Тогда

$$||h||^2 = \sum |c_n|^2.$$
 (1)

 \square В силу непрерывности скалярного произведения и ортонормированности $\{e_n\}$ получаем

$$(h,h) = \lim_{n} (h_n, h_n) = \lim_{n} \sum_{k=1}^{n} |c_k|^2 = \sum_{k=1}^{n} |c_k|^2.$$
 (2)

Задача 1.2. Доказать, что если $\{e_n\}$ — полная ортонормированная система, то вектор h в теореме Pucca — Фишера единствен.

Решение. Пусть нашлись два вектора с одинаковыми коэффициентами Фурье. Их разность, очевидно, имеет нулевые коэффициенты Фурье. Но такой вектор может быть только нулём в силу равенства Парсеваля. Значит, на самом деле векторы равны. ■

Теорема 1.10. B сепарабельном евклидовом пространстве H существует полная ортонормированная система.

Пусть последовательность $\{h_i\}$ такова, что $\operatorname{Cl}\{h_i\}=H$. Можно считать, что все h_i отличны от нуля. Возьмём $e_1:=\frac{h_1}{\|h_1\|}$. Если $\langle e_1\rangle=H$, то ПОНС найдена. В противном случае найдётся ещё один вектор из счётного всюду плотного множества (без ограничения общности это h_2) такой, что $h_2\notin\langle e_1\rangle$. Если уже выбрано (n-1) взаимно ортогональных векторов $\{e_1,\ldots,e_{n-1}\}$ единичной длины, и $h_n\notin\langle e_1,\ldots,e_{n-1}\rangle$, то найдём единичный вектор $e_n\in\langle e_1,\ldots,e_{n-1};h_n\rangle$ такой, что $e_n\bot\langle e_1,\ldots,e_{n-1}\rangle$. Поищем его в виде

$$e_n = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_{n-1} e_{n-1} + h_n.$$

Домножая это равенство скалярно на e_1, \ldots, e_{n-1} , получаем систему уравнений на λ_i :

$$0 = (e_n, e_i) = \lambda_i(e_i, e_i) + (h_n, e_i) = \lambda_i + (h_n, e_i), \quad i = 1, \dots, n - 1.$$

Решая её и нормируя полученный вектор e_n , добавляем его в базис. Если пространство бесконечномерно, этот процесс никогда не оборвётся, и в итоге мы получим счётную систему взаимно ортогональных векторов $\{e_i\}$.

Покажем её полноту. Полнота системы означает, что всякий вектор можно сколь угодно точно приблизить конечной линейной комбинацией векторов из этой системы. Таким свойством обладало семейство $\{h_i\}$, но так как h_i линейно выражаются через e_i (впрочем, и наоборот тоже), то оно переносится и на $\{e_i\}$.

Покажем, что если $g \perp \{e_i\}$, то g = 0. В самом деле, приблизим этот вектор линейной комбинацией векторов $\{e_i\}$, получим вектор g_{ε} . Тогда $(g_{\varepsilon}, g) = 0$, но, переходя к пределу при $\varepsilon \to 0$ (увеличивая точность приближения), получаем, что (g,g) = 0, откуда g = 0.

Теорема 1.11. Все сепарабельные гильбертовы пространства изоморфны между собой.

Пусть $\{e_n\}$ — ПОНС. Возьмём вектор h и его коэффициенты Фурье по этой системе — последовательность $\{c_n\} \in \ell_2$. Как мы знаем, в силу теоремы Рисса – Фишера и задачи 1.2, имеется линейная биекция между векторами пространства и наборами коэффициентов Фурье, то есть изоморфизм произвольного гильбертова пространства на пространство ℓ_2 . Он сохраняет расстояние (то есть норму разности) в силу равенства Парсеваля. Осталось показать, что сохранение нормы влечёт сохранение скалярного произведения. Для этого достаточно вспомнить факт из линейной алгебры: эрмитова полуторалинейная функция однозначно восстанавливается по своей квадратичной функции. По этому поводу см. [4, гл. 5, §5]. ■

1.2. Спектральная теорема

1.2.1. ЛЕММА ОБ ОТОБРАЖЕНИИ СПЕКТРА

Лемма 1.12 (Об отображении спектра). Пусть P — многочлен. Тогда $\Sigma(P(A)) = P(\Sigma(A))$.

Докажем включение «>». Возьмём $\lambda \in \Sigma(A)$. Рассмотрим $P(z) - P(\lambda) = (z - \lambda)Q(z)$, и подставим z = A. Получим $P(A) - P(\lambda)I = (A - \lambda I)Q(A)$. Так как сомножители коммутируют, и оператор $A - \lambda I$ необратим, поэтому необратим и оператор в левой части. Но это и означает, что $P(\lambda) \in \Sigma(P(A))$.

Докажем обратное включение « \subset ». Возьмём $c \in \Sigma(P(A))$ и покажем, что $\exists \lambda \in \Sigma(A)$, для которого $c = P(\lambda)$. Возьмём $P(z)-c=k(z-\lambda_1)\cdot\ldots\cdot(z-\lambda_n)$, откуда $P(A)-cI=k(A-\lambda_1I)\cdot\ldots\cdot(A-\lambda_nI)$. Какой-то из операторов в этом произведении должен быть необратим, иначе был бы обратим и оператор P(A) - cI, что неверно.

Замечание. Свойство коммутирования тут очень важно. Пример: операторы левого и правого сдвига в ℓ_p . Имеем LR = E (т. е. обратимый оператор), а RL — необратим, так как x_1 погибает при левом сдвиге, т. е. имеется ядро $\langle (1,0,0,\ldots) \rangle$.

1.2.2. Спектральный радиус оператора и его оценка сверху

Определение. Спектральным радиусом оператора A называется число $r(A) := \sup\{|\lambda| \colon \lambda \in \Sigma(A)\}$. Это «наименьший» радиус круга, в который умещается спектр оператора.

Определение. Последовательность $\{a_n\}$ называется nonyaddumuвной, если $a_{m+n} \leqslant a_m + a_n$ для всех m, n.

Лемма 1.13 (Фекете). Для полуаддитивных последовательностей имеет место свойство

$$\lim_{n} \frac{a_n}{n} = \inf_{n} \frac{a_n}{n}.$$

Положим $A:=\inf_n \frac{a_n}{n}$. Вообще говоря, может получиться так, что $A=-\infty$. Но это не повлияет на дальнейшие рассуждения. По определению нижней грани найдётся n_{ε} , для которого $\frac{a_{n_{\varepsilon}}}{n_{\varepsilon}} - A < \varepsilon$. Рассмотрим произвольное n и поделим с остатком на $n_{\varepsilon}\colon n=k\cdot n_{\varepsilon}+r.$ Тогда при $n\to\infty$ имеем

$$\frac{a_n}{n} \leqslant \frac{k \cdot a_{n_{\varepsilon}} + a_r}{k \cdot n_{\varepsilon} + r} = \frac{a_{n_{\varepsilon}} + \frac{a_r}{k}}{n_{\varepsilon} + \frac{r}{k}} \to \frac{a_{n_{\varepsilon}}}{n_{\varepsilon}}.$$

Отсюда следует, что $\lim_{n} \frac{a_n}{n}$ существует и равен A.

Лемма 1.14 (Оценка спектрального радиуса). Справедливы соотношения:

$$r(A) = \lim_{n} \sqrt[n]{\|A^n\|}.$$

 $u(r(A) \leq ||A||$, причём для самосопряжённых операторов неравенство обращается в равенство.

Рассмотрим $a_n := \ln \|A^n\|$, тогда $a_{n+m} \leqslant a_n + a_m$. По лемме Фекете имеем $\frac{a_n}{n} \to \inf_k \frac{a_k}{k}$, поэтому существует предел $\lim_n \sqrt[n]{\|A^n\|}$. Положим $s(A) := \lim_n \sqrt[n]{\|A^n\|} = \overline{\lim_n} \sqrt[n]{\|A^n\|}$. Сначала покажем, что $r(A) \leqslant s(A)$. Действительно, при $|\lambda| > s(A)$ степенной ряд для резольвенты

$$(A - \lambda I)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^k}{\lambda^k}$$
 (3)

мажорируется по норме в пространстве операторов сходящимся числовым рядом, поэтому имеет место сходимость.

Теперь докажем обратную оценку. Как мы знаем, резольвента аналитична в дополнении к спектру, поэтому в кольце $|\lambda| > r(A)$ она задаётся рядом Лорана (3). По формуле Коши – Адамара получаем, что радиус кольца его сходимости равен s(A). Поэтому верно и обратное неравенство. Таким образом, r(A) = s(A).

Далее, так как $||A^n|| \le ||A||^n$, то $\sqrt[n]{||A^n||} \le ||A||$, поэтому $r(A) \le ||A||$.

Покажем, что для самосопряжённых операторов достигается равенство в этом соотношении. Пусть A — самосопряжённый оператор. Как мы знаем, $\|A^*A\| = \|A\|^2$, поэтому $\|A^2\| = \|A\|^2$. Следовательно, имеет место равенство $\|A^{2^k}\| = \|A\|^{2^k}$. В формуле для s(A) перейдём к пределу по подпоследовательности индексов $n = 2^k$, получим требуемое. Но так как сама последовательность сходится, предел подпоследовательности совпадает с обычным пределом. \blacksquare

Задача 1.3. Пусть $M \subset H$ — подмножество гильбертова пространства. Тогда $(M^{\perp})^{\perp} = \operatorname{Cl} \langle M \rangle$.

Утверждение 1.15. Пусть B- оператор в гильбертовом пространстве. Тогда $(\operatorname{Im} B)^{\perp}=\operatorname{Ker} B^*.$

□ По определению, $\operatorname{Im} B = \{Bx \mid x \in H\}$. Если $y \in (\operatorname{Im} B)^{\perp}$, то для $\forall x \in H$ имеем $0 = (Bx, y) = (x, B^*y)$. Но это означает, что $B^*y = 0$, поэтому $y \in \operatorname{Ker} B^*$. Осталось заметить, что рассуждения обратимы. \blacksquare

Утверждение 1.16. Спектр самосопряжённого оператора веществен.

 \square Пусть $\lambda \notin \mathbb{R}$, тогда $\mathrm{Ker}(A-\lambda I)=0$, ибо собственные значения самосопряжённого оператора вещественны. В самом деле, если $Ax=\lambda x$, то $\lambda(x,x)=(\lambda x,x)=(Ax,x)=(x,Ax)=(x,\lambda x)=\overline{\lambda}(x,x)$, поэтому $\lambda \in \mathbb{R}$.

Теперь покажем, что $\operatorname{Im}(A-\lambda I)$ плотен в H. Имеем $\operatorname{Im}(A-\lambda I)^{\perp}=\operatorname{Ker}(A-\lambda I)^*=\operatorname{Ker}(A-\overline{\lambda}I)=0$. Применяя результат задачи к $M=\operatorname{Im}(A-\lambda I)$, получаем, что $\operatorname{Cl}\operatorname{Im}(A-\lambda I)=0^{\perp}=H$.

Поскольку ${\rm Ker}(A-\lambda I)=0$, оператор, обратный к $A-\lambda I$, однозначно определён на образе ${\rm Im}(A-\lambda I)$. Докажем его ограниченность: пусть $\lambda=a+bi$, где $b\neq 0$. Тогда

$$\|(A - \lambda I)x\|^{2} = ((A - a - bi)x, (A - a - bi)x) =$$

$$= ((A - a)x - (bi)x, (A - a)x - (bi)x) = \|(A - a)x\|^{2} + b^{2} \|x\|^{2} \ge b^{2} \|x\|^{2},$$

значит, оператор ограничен снизу. Но тогда обратный оператор ограничен сверху. Поскольку образ всюду плотен, оператор можно продолжить по непрерывности на всё пространство, значит, он обратим и $\lambda \notin \Sigma(A)$.

1.2.3. Общий вид функционала на пространстве непрерывных функций

Теорема 1.17 (Ф. Рисса). Всякий ограниченный линейный функционал $f : \mathbf{C}[0,1] \to \mathbb{C}$ можно представить интегралом Римана – Стилтьеса по функции $g \in \mathbf{VB}[0,1]$, то есть $f(\varphi) = \int \varphi \, dg$.

 \square Пусть $\mathbf{B}[0,1]$ — пространство ограниченных функций с чебышёвской нормой. Продолжим наш функционал f на пространство \mathbf{B} и обозначим полученное продолжение через F. Положим $g(t):=F\left(\chi_{[0,t)}\right)$, где χ — индикатор. Для краткости аргумент индикаторов писать не будем. Покажем, что $g\in\mathbf{VB}$.

В самом деле, рассмотрим разбиение отрезка [0,1] точками $0=t_0,\ldots,t_n=1$. Рассмотрим

$$\sum_{k=1}^{n} |g(t_k) - g(t_{k-1})| = \sum_{k=1}^{n} |F\left(\chi_{[0,t_k)}\right) - F\left(\chi_{[0,t_{k-1})}\right)| = \sum_{k=1}^{n} \left[F\left(\chi_{[0,t_k)}\right) - F\left(\chi_{[0,t_{k-1})}\right)\right] e^{i\alpha_k} =$$

$$= F\left(\sum_{k=1}^{n} e^{i\alpha_k} \chi_{[t_{k-1},t_k)}\right) \leqslant ||F|| \cdot \left|\left|\sum_{k=1}^{n} e^{i\alpha_k} \chi_{[t_{k-1},t_k)}\right|\right| = ||F|| \cdot 1 = ||F||.$$

В этих выкладках мы «подкрутили» слагаемые коэффициентами $e^{i\alpha_k}$ так, что каждое комплексное число совпало со своим модулем. Итак, доказано, что $g \in \mathbf{VB}$.

Теперь рассмотрим $\varphi \in \mathbb{C}[0,1]$ и приблизим её ступенчатыми функциями:

$$\varphi_n(t) = \sum_{k=1}^n \varphi\left(\frac{k}{n}\right) \cdot \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)} = \sum_{k=1}^n \varphi\left(\frac{k}{n}\right) \cdot \left(\chi_{\left[0, \frac{k}{n}\right)} - \chi_{\left[0, \frac{k-1}{n}\right)}\right).$$

Тогда $\varphi_n \rightrightarrows \varphi$ и потому $F(\varphi_n) \to F(\varphi)$. Вспоминая определение интеграла Римана—Стилтьеса, получаем

$$F(\varphi_n) = \sum_{k=1}^n \varphi\left(\frac{k}{n}\right) \cdot \left[g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right)\right] \to \int_0^1 \varphi(t) \, dg(t),$$

что и требовалось доказать.

Определение. Назовём ε -индикатором отрезка $[\alpha, \beta]$ непрерывную функцию, равную нулю вне отрезка, равную единице на отрезке $[\alpha + \varepsilon, \beta - \varepsilon]$ и доопределённую линейным образом на интервалах $(\alpha, \alpha + \varepsilon)$ и $(\beta - \varepsilon, \beta)$.

Следующее утверждение является некоторым дополнением к теореме Рисса об общем виде функционалов на ${\bf C}[a,b]$.

Утверждение 1.18. Пусть $f(\varphi) := \int \varphi \, dg - \phi$ ункционал на $\mathbf{C}[a,b]$. Если он вещественный, то функцию g можно выбрать вещественной, а если он неотрицателен, то g можно взять неубывающей.

Пусть g не является вещественнозначной функцией. Тогда найдётся интервал (α, β) , на котором $g(\beta) - g(\alpha) \notin \mathbb{R}$. Возьмём ε -индикатор отрезка α, β), На такой функции значение нашего функционала, то есть попросту интеграла, не будет вещественным.

Пусть теперь функционал неотрицателен. Допустим, что g убывает на каком-нибудь отрезке $[\alpha, \beta]$. Тогда интеграл от ε -индикатора этого отрезка будет отрицательным.

1.2.4. Доказательство спектральной теоремы

Напомним, что $L_2(\sigma)$ — пространство L_2 интегрируемых в квадрате функций по некоторой мере σ .

Определение. Говорят, что оператор A имеет $uu\kappa nuueckuu$ вектор, если $\exists h \in H$, для которого линейная оболочка $\langle A^n h \mid n \in \mathbb{Z}_+ \rangle$ всюду плотна в H.

Лемма 1.19. Пусть A — самосопряжённый оператор. Тогда $||P(A)|| \le ||P||_C$, где $||\cdot||_C$ — чебышёвская норма на пространстве $\mathbf{C}[-||A||,||A||]$.

□ В силу фундаментального равенства имеем

$$||P(A)||^2 = ||P^*(A)P(A)|| = ||\overline{P}P(A)|| = \sup\{|\lambda| : \lambda \in \Sigma(\overline{P}P(A))\} = \sup\{|P(\lambda)|^2 : \lambda \in \Sigma(A)\}.$$

Далее, поскольку $\lambda \in \mathbb{R}$, можно брать верхнюю грань только по отрезку $[-\|A\|, \|A\|]$ вещественной оси. Значит,

$$\left\|P(A)\right\|^{2}\leqslant\sup\left\{ \left|P(\lambda)\right|^{2}:\lambda\in\left[-\left\|A\right\|,\left\|A\right\|\right]\right\} ,$$

а это и есть определение чебышёвской нормы.

Теорема 1.20 (Спектральная теорема). Пусть самосопряжённый оператор $A \colon H \to H$ имеет циклический вектор $h \in H$. Тогда существует мера σ на отрезке $[-\|A\|,\|A\|]$ и изометрическое отображение $U \colon H \to L_2(\sigma)$, для которого UAU^{-1} есть оператор умножения на независимую переменную: $f(\lambda) \mapsto \lambda f(\lambda)$.

 \square Сначала докажем, что это верно для многочленов. Пусть P — многочлен. Рассмотрим функционал $\alpha(P) := (P(A)h, h)$. Он линейный, неотрицательный и ограниченный.

Покажем, что если $f\geqslant 0$, то $\alpha(f)\geqslant 0$. Рассмотрим $g=\sqrt{f}$, тогда $\alpha(f)=\left(g^2(A)h,h\right)=\left(g(A)h,g(A)h\right)=\|g(A)h\|^2\geqslant 0$. Здесь мы воспользовались тем, что $\left(g(A)\right)^*=g(A)$. Для многочленов это верно, а для функций — в силу непрерывности.

По теореме Рисса функционал α имеет представление $\alpha(P) = \int P \, d\sigma$, где σ — мера на $X := [-\|A\|, \|A\|]$. Построим, наконец, отображение U: положим U(P(A)h) := P. Покажем, что это отображение корректно задано, то есть покажем, что если P(A) = Q(A), то $P \stackrel{\text{п.в.}}{=} Q$ по мере σ . Имеем

$$0 = \| (P(A) - Q(A))h \|^2 = \| (P - Q)(A)h \|^2 = ((P - Q)(A)h, (P - Q)(A)h) =$$

$$= (|P - Q|^2(A)h, h) = \alpha (|P - Q|^2) = \int |P - Q|^2 d\sigma = \|P - Q\|_{L_2(\sigma)}.$$

Тем самым проверена не только корректность, но и изометричность отображения U, а также и то, что обратное отображение U^{-1} существует.

Рассмотрим действие на векторах P(A)h: имеем $(UAU^{-1}P)(\lambda) = (UAP(A)h)(\lambda) = \lambda P(\lambda)$ по определению отображения U. В общем случае, приблизим функцию из $L_2(\sigma)$ многочленами $\{P_n\}$, тогда получим

$$(UAU^{-1}P_n)(\lambda) = \lambda P_n(\lambda) \xrightarrow{\text{\tiny I.B.}} \lambda f(\lambda) = (UAU^{-1}) f(\lambda).$$

Это и завершает доказательство спектральной теоремы.

2. Компактные операторы

2.1. Компактные операторы в банаховых пространствах

2.1.1. Определение и свойства компактных операторов

Определение. Оператор называется компактным, если образ единичного шара предкомпактен.

Утверждение 2.1. Сумма компактных операторов есть снова компактный оператор.

□ Очевидно, если воспользоваться, например, критерием Хаусдорфа.

Утверждение 2.2. Произведение компактного и ограниченного операторов есть компактный оператор.

 \square Пусть A — компактный, а B — ограниченный операторы. Сначала покажем, что оператор AB компактен. Если множество M ограничено, то B(M) тоже ограничено. Тогда A(B(M)) предкомпактно, и всё доказано.

Теперь покажем, что BA тоже компактный оператор. Для этого воспользуемся критерием Хаусдорфа предкомпактности множества. В силу компактности A, для любого ε в множестве A(M) существует конечная ε -сеть. Очевидно, что для множества B(A(M)) годится $\|B\| \cdot \varepsilon$ -сеть, которая получается из исходной сети после применения оператора B.

Утверждение 2.3. Ограниченный оператор с конечномерным образом компактен.

 \square Действительно, всякое бесконечное ограниченное множество в конечномерном пространстве предкомпактно. Следовательно, из образа любой ограниченной последовательности можно будет выделить фундаментальную. \blacksquare

Следствие 2.1. Компактный оператор в бесконечномерном пространстве необратим.

 \square В самом деле, допустим противное. Поскольку $AA^{-1}=\mathrm{id}$, в силу предыдущего утверждения получаем, что id является компактным оператором. Но это неверно, поскольку в бесконечномерном пространстве единичный шар не является предкомпактом.

Теорема 2.4. Пусть A_n — последовательность компактных операторов в банаховом пространстве, u $A_n \to A$ по норме. Тогда A компактен.

 \square Пусть $\{x_n\}$ — ограниченная последовательность. Нужно доказать, что из последовательности $\{Ax_n\}$ можно выбрать фундаментальную.

Так как A_1 компактен, то выбираем последовательность $x_n^{(1)}$ такую, что последовательность $A_1x_n^{(1)}$ сходится. Из неё выбираем $x_n^{(2)}$ такую, что $A_2x_n^{(2)}$ сходится, и так далее. Возьмём диагональ $y_i:=x_i^{(i)}$ и покажем, что последовательность Ay_i фундаментальна. По условию $\|x_n\| \leqslant C$, а $\|A_ky_n - A_ky_m\| \to 0$ в силу фундаментальности. Кроме того, $\|A - A_k\| \to 0$. Поэтому

$$||Ay_{n} - Ay_{m}|| \leq ||Ay_{n} - A_{k}y_{n}|| + ||A_{k}y_{n} - A_{k}y_{m}|| + ||A_{k}y_{m} - Ay_{m}|| \leq$$

$$\leq ||A - A_{k}|| \cdot ||y_{n}|| + ||A_{k}y_{n} - A_{k}y_{m}|| + ||A - A_{k}|| \cdot ||y_{m}|| \leq$$

$$\leq ||A - A_{k}|| \cdot C + ||A_{k}y_{n} - A_{k}y_{m}|| + ||A - A_{k}|| \cdot C \to 0,$$

а это и значит, что последовательность $\{Ay_i\}$ фундаментальна.

Лемма 2.5. Собственные векторы с различными собственными значениями линейно независимы.

 \square Докажем утверждение индукцией по количеству k собственных векторов e_1, \ldots, e_k с собственными значениями $\lambda_1, \ldots, \lambda_k$ соответственно. При k=1 доказывать нечего. Пусть k>1, и

$$e_1 + \ldots + e_{k-1} + e_k = 0,$$

тогда, применяя к этому равенству оператор, получаем

$$\lambda_1 e_1 + \ldots + \lambda_{k-1} e_{k-1} + \lambda_k e_k = 0.$$

Вычтем отсюда исходное равенство, умноженное на λ_k , получим

$$(\lambda_1 - \lambda_k)e_1 + \ldots + (\lambda_{k-1} - \lambda_k)e_{k-1} = 0.$$

По предположению индукции такое возможно только если $e_i=0$ при $i=1,\ldots,k-1$. Но тогда и $e_k=0$.

Теорема 2.6. Пусть оператор $A\colon X\to X$ — компактен, пространство X — банахово. Тогда количество собственных значений вне всякого круга радиуса r>0 с центром в нуле лишь конечное число.

Пусть $\{\lambda_n\}$ — попарно различные ненулевые собственные значения оператора A. Покажем, что $\lambda_n \to 0$. Допустим противное, тогда из $\{\lambda_n\}$ можно выделить подпоследовательность так, что после перенумерации последовательность $\{\frac{1}{|\lambda_n|}\}$ ограничена. Рассмотрим цепочку подпространств $X_n := \langle e_1, \dots, e_n \rangle$, где e_i — собственный вектор с собственным значением λ_i . Тогда e_1, \dots, e_n будут линейно независимыми, следовательно, $\{X_n\}$ — строго возрастающая цепочка. В силу леммы о почти перпендикуляре, найдутся единичные векторы $x_n \in X_n$, для которых $\rho(x_n, X_{n-1}) > \frac{1}{2}$. Разложим их по базису подпространств X_n : пусть $x_n = \sum_{k=1}^n c_k e_k$. Как

легко видеть, $\frac{Ax_n}{\lambda_n} - x_n \in X_{n-1}$. По предположению, последовательность $\left\{\frac{x_n}{\lambda_n}\right\}$ ограничена. Подействуем на неё оператором A и увидим, что получается ёж. В самом деле, при n < m имеем

$$v := \frac{Ax_n}{\lambda_n} - \frac{Ax_m}{\lambda_m} = \underbrace{\frac{Ax_n}{\lambda_n}}_{\in X_{m-1}} - x_m + \underbrace{x_m - \frac{Ax_m}{\lambda_m}}_{\in X_{m-1}},$$

значит, $||v|| = ||-x_m + ($ вектор из $X_{m-1})|| \geqslant \frac{1}{2}$, а это противоречит компактности оператора A.

2.1.2. Слабая сходимость и слабая компактность

Пусть X — нормированное пространство.

Определение. Говорят, что последовательность x_n слабо сходится к x, если для любого ограниченного функционала f на X имеем $f(x_n) \to f(x)$. Обозначение: $x_n \stackrel{\text{w}}{\longrightarrow} x$.

Определение. Говорят, что последовательность функционалов f_n слабо сходится к f, если для любого вектора $x \in X$ имеем $f_n(x) \to f(x)$. Обозначение: $f_n \xrightarrow{w} f$.

Определение. Говорят, что последовательность x_n слабо ограничена, если для любого ограниченного функционала f на X имеем $|f(x_n)| \leq C(f)$.

Лемма 2.7. Существует изометричное вложение $X \hookrightarrow X^{**}$.

 \square Зададим вложение так: $x \mapsto F_x$, где $F_x \in X^{**}$ — функционал на X^* , действующий на элементах $f \in X^*$ следующим образом:

$$F_x \colon f \mapsto f(x).$$

Это вложение, очевидно, линейно. Докажем, что это изометрия. Обозначим норму в X^{**} через $\|\cdot\|_2$. С одной стороны, по определению нормы имеем $|f(x)| \leq \|f\| \cdot \|x\|$, поэтому

$$||x|| \geqslant \sup_{f} \frac{|f(x)|}{||f||} = ||x||_{2}.$$

С другой стороны, в силу одного из следствий теоремы Хана – Банаха, для всякого $x_0 \in X$ найдётся функционал f_0 такой, что $|f_0(x_0)| = ||f_0|| \cdot ||x_0||$, поэтому

$$||x||_2 = \sup_f \frac{|f(x)|}{||f||} \geqslant ||x||,$$

следовательно, $||x|| = ||x||_2$.

Утверждение 2.8. Слабо ограниченная последовательность ограничена по норме.

Применим теорему Банаха – Штейнгауза к пространствам X^* и X^{**} , то есть вместо последовательности $\{x_i\}$ рассматривая её образ в X^{**} . В силу этой теоремы семейство образов будет ограниченным, но в силу изометричности вложения этим свойством будет обладать и исходное семейство векторов. ■

Примечание: Если это рассуждение непонятно, то можно в лоб доказать аналог ТБШ. Впрочем, в конце рассуждение о вложении $X \hookrightarrow X^{**}$ придётся повторить. Доказательство можно найти в приложении 5.3.3.

Утверждение 2.9. Из слабой сходимости следует слабая ограниченность.

Пусть $x_n \xrightarrow{w} x$. Это означает, что для каждого f найдется N такое, что при всех n > N имеем $|f(x_n) - f(x)| ≤ 1$. Но остальных n лишь конечное число, поэтому для каждого f последовательность $\{f(x_n)\}$ ограничена. ■

Теорема 2.10 (О слабой компактности). Пусть X — сепарабельное нормированное пространство. Тогда всякое ограниченное бесконечное подмножество в X^* является слабо предкомпактным.

Выберем в X счётное всюду плотное множество $D:=\{x_n\}$. Пусть $\{f_n\}$ — ограниченная последовательность функционалов. Рассмотрим последовательность чисел $\{f_n(x_1)\}$. Она ограничена, а потому содержит сходящуюся. Обозначим её через $f_n^{(1)}(x_1)$. Рассмотрим последовательность чисел $\{f_n^{(1)}(x_2)\}$. Она тоже содержит сходящуюся подпоследовательность $f_n^{(2)}(x_2)$. Продолжая этот процесс и выделяя диагональ $\varphi_n:=f_n^{(n)}$, получаем последовательность функционалов, которая сходится на всех векторах x_i .

Покажем, что сходимость имеет место для всех векторов $x \in X$. Покажем фундаментальность последовательности $\{\varphi_i(x)\}$. Рассмотрим последовательность элементов из D, сходящуюся к x, тогда, очевидно,

$$|\varphi_m(x) - \varphi_n(x)| = |\varphi_m(x) - \varphi_m(x_k) + \varphi_m(x_k) - \varphi_n(x_k) + \varphi_n(x_k) - \varphi_n(x)| \le$$

$$\le |\varphi_m(x) - \varphi_m(x_k)| + |\varphi_m(x_k) - \varphi_n(x_k)| + |\varphi_n(x_k) - \varphi_n(x)| \to 0.$$

Теорема доказана. ■

Следствие 2.2. Пусть $D \subset X$ — счётное всюду плотное множество. Пусть для каждого $x \in D$ последовательность $f_k(x)$ сходится. Тогда существует функционал f такой, что $f_k \stackrel{\mathrm{w}}{\longrightarrow} f$.

Утверждение 2.11. Слабый предел единствен.

 \square Допустим, что $x_n \xrightarrow{w} x$ и $x_n \xrightarrow{w} y$, причём $x \neq y$. Тогда, по определению слабой сходимости, для любого f имеем $f(x_n) \to f(x)$ и $f(x_n) \to f(y)$. Следовательно, для всякого функционала f имеем f(x) = f(y),

то есть f(x-y) = 0. Но по лемме о продолжении функционала существует f, который равен 1 на векторе x-y. Противоречие. ■

Лемма 2.12. Пусть последовательность $\{x_n\}$ в банаховом пространстве слабо сходится к x_0 и предком $na\kappa m + a$. Тогда $x_n \to x_0$ по норме пространства.

🗆 В силу предкомпактности из последовательности можно выделить фундаментальную подпоследовательность x_{n_k} . В силу полноты пространства она сходится к некоторому вектору \widehat{x} . Из сходимости по норме очевидно следует слабая сходимость, поэтому $x_{n_k} \stackrel{\text{w}}{\longrightarrow} \hat{x}$. Но слабый предел единствен, поэтому $\hat{x} = x_0$, что и требовалось

Следствие 2.3. Компактный оператор переводит слабо сходящуюся последовательность в сходящуюся по норме.

Как уже было доказано, слабо сходящаяся последовательность ограничена. По определению компактного оператора, $\{Ax_n\}$ предкомпактно, поэтому содержит сходящуюся к некоторой точке y подпоследовательность. Очевидно, что $\{Ax_n\}$ тоже слабо сходится, а поскольку слабый предел совпадает с сильным (если последний существует), то и образ всей последовательности сходится к y.

2.1.3. КЛАССИФИКАЦИЯ ТОЧЕК СПЕКТРА

Пусть $A\colon X o X$ — ограниченный оператор в банаховом пространстве. Расклассифицируем точки $\lambda\in\mathbb{C}$ для оператора $A - \lambda I$, причём здесь мы будем придерживаться классификации, используемой в книге Глазмана.

- Пусть $\mathrm{Ker}(A-\lambda I) \neq 0,$ но это ядро конечномерно. Тогда λ собственные значения конечной кратности. В этом случае, разумеется, $A - \lambda I$ необратим (даже в алгебраическом смысле). Множество таких точек обозначим через $\Sigma_p(A)$ и назовём точечным спектром.
- Пусть $\text{Im}(A \lambda I) \neq X$. Тогда возможно 2 случая:
 - а) $Ker(A \lambda I) = 0$ и $Cl Im(A \lambda I) \neq Im(A \lambda I)$;
 - b) λ собственное значение бесконечной кратности, то есть dim Ker $(A \lambda I) = \infty$.

Такие точки λ называются точками непрерывного спектра. Обозначим его через $\Sigma_c(A)$.

- Пусть $Im(A \lambda I) \neq X$ и замкнут. [Ещё какой-то спектр]
- \bullet Ker $(A-\lambda I)=0$ и Im $(A-\lambda I)=X$. Тогда в силу теоремы Банаха, существует ограниченный обратный оператор $(A - \lambda I)^{-1}$. В этом случае говорят, что λ — точка резольвентного множества.

2.1.4. Сохранение непрерывного спектра при компактном возмущении

В этом разделе X — сепарабельное гильбертово пространство, а $A \colon X \to X$ — ограниченный оператор.

Лемма 2.13. Положим $B:=A-\lambda I$. Пусть λ — точка непрерывного спектра, причём $\ker B=0$. Положим $Y:=\operatorname{Im} B$. Тогда отображение $C\colon Y\to X$ является неограниченным оператором.

 \square По условию Y не является замкнутым подпространством, поэтому оно не может быть полным. Допустим, что C — ограниченный оператор. Возьмём фундаментальную последовательность $\{y_n\}\subset Y$. Положим $x_n:=Cy_n$, тогда, очевидно, $\{x_n\}$ — тоже фундаментальна. В силу полноты X она сходится к некоторому вектору $x \in X$. Поскольку B ограничен и потому непрерывен, получаем $Bx_n \to Bx$. Но $Bx_n = y_n$, а $Ax \in Y$. Значит, $y_n \to y$. Тем самым показано, что Y полное пространство. Противоречие, значит, оператор C не является ограниченным. \blacksquare

Лемма 2.14. Положим $B:=A-\lambda I.$ Если $\lambda\in\Sigma_c(A),$ то существует непредкомпактная последовательность $x_n\in X$ такая, $umo ||x_n|| = 1 \ u \ Bx_n \to 0.$

 \square Пусть $\lambda \in \Sigma_c(A)$. Точки непрерывного спектра бывают двух видов, и придётся разобрать два случая.

Пусть сначала $\dim \operatorname{Ker} B = \infty$. Так как единичная сфера в бесконечномерном пространстве не является предкомпактом, можно выбрать непредкомпактную последовательность $\{x_n\} \subset \text{Ker } B$. Но в этом случае $Bx_n = 0$, поэтому всё доказано.

Во второму случае применим только что доказанную лемму, которая говорит, что оператор $C := B^{-1}$, (определённый, впрочем, только на ${\rm Im}\, B)$ является неограниченным. Тогда, как несложно видеть, существует последовательность $\{y_n\}\subset {\rm Im}\, B$, для которой $||y_n|| = 1$ и $||Cy_n|| \ge n$, поэтому, положив

$$x_n := \frac{Cy_n}{\|Cy_n\|},$$

получаем искомую последовательность, ибо $\|Bx_n\| \leqslant \frac{1}{n}$. Осталось показать, что полученная последовательность непредкомпактна. Допустим противное, тогда из неё можно выделить фундаментальную подпоследовательность, которая в силу полноты пространства сходится к некоторому вектору $x \in X$. Перенумеруем её, тогда $x_n \to x$. В силу непрерывности B имеем $Bx_n \to Bx$, с другой стороны, $Bx_n \to 0$. Таким образом, Bx = 0. Но поскольку $\operatorname{Ker} B = 0$, то и x = 0, с другой стороны, $\|x_n\| = 1$ и $x_n \to x$, поэтому $\|x\| = 1$. Противоречие.

При данном определении непрерывного спектра обратное утверждение леммы неверно, поэтому далее в этом разделе будет использовано такое определение непрерывного спектра:

Определение. Положим $B:=A-\lambda I$. Точка $\lambda\in\Sigma_c(A)$ тогда и только тогда, когда существует непредкомпактная последовательность $x_n \in X$ такая, что $||x_n|| = 1$ и $Bx_n \to 0$.

Определение. Множество векторов $\{x_n\}$ называется ε -ежом, если для $\forall n, m$ имеем $||x_n - x_m|| \geqslant \varepsilon$.

Теорема 2.15. Пусть $A: X \to X$ — ограниченный оператор в сепарабельном гильбертовом пространстве $X, a K: X \to X$ — компактный оператор. Тогда $\Sigma_c(A+K) = \Sigma_c(A)$.

 \square Пусть $\lambda \in \Sigma_c(A)$. Положим $B := A - \lambda I$. По лемме¹ существует непредкомпактная последовательность $\{x_n\}$ такая, что $\|x_n\| = 1$ и $Bx_n \to 0$. Из доказательства критерия Хаусдорфа следует, что найдётся подпоследовательность $\{y_n\} \subset \{x_n\}$, образующая ε-ежа. Поскольку $\{y_n\}$ ограничена, по теореме о слабой компактности², из y_n можно выделить слабо сходящуюся последовательность $\{z_n\}$.

Покажем, что последовательность $\{z_n - z_{n+1}\}$ будет непредкомпактной. Действительно, допустим, что из неё можно выбрать фундаментальную. Тогда в силу полноты пространства получаем

$$\Delta z_k := (z_{n_k+1} - z_{n_k}) \to z \in X.$$

 Π усть f — произвольный ограниченный функционал. В силу слабой сходимости имеем

$$f(\Delta z_k) = f(z_{n_k+1}) - f(z_{n_k}) \to 0,$$

поскольку каждое слагаемое сходится к одному и тому же числу. Таким образом, $\Delta z_k \stackrel{\text{w}}{\longrightarrow} 0$. Но у этой последовательности существует и сильный предел z, поэтому z=0, то есть $z_{n_k+1}-z_{n_k}\to 0$. Но это противоречит тому, что последовательность $\{z_n\}$ является ε -ежом.

Осталось показать, что $(B+K)(z_n-z_{n+1})\to 0$. В самом деле, имеем

$$(B+K)(z_n - z_{n+1}) = Bz_n - Bz_{n+1} + Kz_n - Kz_{n+1}.$$

Первые два слагаемых идут к нулю в силу выбора $\{z_n\}$, а вторые два сходятся к одному и тому же вектору, поскольку слабо сходящаяся последовательность $\{z_n\}$ перерабатывается компактным оператором K в сходящуюся по норме. Применяя лемму в обратную сторону, получаем, что $\lambda \in \Sigma_c(B+K)$.

2.2. Компактные операторы в гильбертовых пространствах

2.2.1. ТЕОРЕМА ГИЛЬБЕРТА – ШМИДТА

В этом разделе A — компактный самосопряжённый оператор в сепарабельном гильбертовом пространстве H. Введём обозначение Q(x) := (Ax, x). Заметим, что это число всегда вещественно в силу самосопряжённости оператора.

Лемма 2.16. Пусть $x_n \stackrel{\mathrm{w}}{\longrightarrow} x$. Тогда $Q(x_n) \to Q(x)$.

□ Имеем

$$|Q(x_n) - Q(x)| = |(Ax_n, x_n) - (Ax, x)| = |(Ax_n, x_n) - (Ax, x_n) + (Ax, x_n) - (Ax, x)| \le$$

$$\le |(Ax_n, x_n) - (Ax, x_n)| + |(Ax, x_n) - (Ax, x)| \stackrel{!}{=} |(A(x_n - x), x_n)| + |(x, A(x_n - x))| \le$$

$$\le ||A(x_n - x)|| \cdot ||x_n|| + ||x|| \cdot ||A(x_n - x)|| \to 0.$$

Здесь равенство «!» следует из свойств самосопряжённого оператора, а сходимость к нулю вытекает из свойств компактных операторов и ограниченности $||x_n||$ (а это — следствие слабой сходимости).

Лемма 2.17. Если |Q(x)| достигает на единичной сфере своего максимума в точке x_0 , то для любого вектора у такого, что $(x_0,y)=0$, выполнено $(Ax_0,y)=0$, то есть $\langle x_0 \rangle^\perp \subset \langle Ax_0 \rangle^\perp$.

□ Рассмотрим вектор

$$v := \frac{x_0 + ay}{\|x_0 + ay\|}, \quad a \in \mathbb{C}.$$

Используя самосопряжённость оператора и теорему Пифагора для векторов x_0 и y, получаем

$$Q(v) = \frac{1}{1 + |a|^2 \cdot ||y||^2} \cdot (Q(x_0) + 2\operatorname{Re}(\overline{a}(Ax_0, y)) + |a|^2 Q(y)).$$

Если $(Ax_0, y) \neq 0$, то выбирая a малым по модулю и подкручивая его аргумент, можно сделать так, что число $\operatorname{Re}(\overline{a}(Ax_0, y))$ будет ненулевым вещественным и будет иметь тот же знак, что и $Q(x_0)$. Тогда $|Q(v)| > |Q(x_0)|$, а мы предположили, что x_0 максимизирует модуль Q. Полученное противоречие показывает, что $(Ax_0, y) = 0$.

 $^{^{1}}$ То есть по новому определению

 $^{^{2}}$ Мы доказывали её для сопряжённого пространства. Но в случае гильбертовых пространств мы пользуемся антиизоморфизмом H и H^{*} , и потому шар в гильбертовом пространстве слабо компактен. Заметим, что именно здесь используется сепарабельность.

Следствие 2.4. Если |Q(x)| достиг максимума на векторе x_0 , то это собственный вектор оператора A.

 \square По лемме имеем $\langle x_0 \rangle^{\perp} \subset \langle Ax_0 \rangle^{\perp}$, поэтому $(\langle x_0 \rangle^{\perp})^{\perp} \supset (\langle Ax_0 \rangle^{\perp})^{\perp}$, то есть $\langle Ax_0 \rangle \subset \langle x_0 \rangle$.

Теорема 2.18 (Гильберта – Шмидта). Компактный самосопряжённый оператор A в сепарабельном гильбертовом пространстве H обладает базисом из собственных векторов.

□ Будем строить элементы базиса по индукции в порядке убывания модулей собственных значений.

Покажем, что на единичной сфере функция |Q(x)| достигает своего максимума. Пусть $S:=\sup |Q(x)|$, а x_n — последовательность единичных векторов, реализующая S. Поскольку единичный шар слабо предкомпактен, можно выбрать подпоследовательность $y_n \stackrel{\mathrm{w}}{\longrightarrow} y$. При этом в силу первой леммы получаем $|Q(y_n)| \to |Q(y)|$, поэтому |Q(y)| = S.

В качестве первого базисного вектора e_1 возьмём вектор y. Теперь рассмотрим подпространство $\langle e_1 \rangle^{\perp}$. Оно в силу самосопряжённости оператора инвариантно относительно A. В нём повторим эту же процедуру, найдём e_2 , и так далее. Если начиная с какого-то момента мы получаем $Q(x) \equiv 0$, это означает, что ненулевые собственные значения кончились, и мы попали в ядро оператора. Во противном случае получаем последовательность ненулевых собственных значений $\{\lambda_n\}$. Они, очевидно, сходятся к нулю. В самом деле, если бы их модули были ограничены снизу, то образы единичных базисных векторов образовывали бы ежа, а не предкомпактное множество.

Таким образом, мы представили произвольный вектор $x \in H$ в виде

$$x = \sum c_i e_i + z,\tag{1}$$

где $z \in \operatorname{Ker} A$, причём оператор действует диагонально: $Ax = \sum \lambda_i c_i e_i$.

Следствие 2.5 (Об общем виде компактного оператора в гильбертовом пространстве). Для всякого компактного оператора $A\colon H\to H$ существуют $OHC\{\varphi_k\}$ и $\{\psi_k\}$, такие, что ряд

$$Ax = \sum_{k=1}^{\infty} \lambda_k(x, \psi_k) \varphi_k$$

сходится по норме.

 \Box Рассмотрим оператор A^*A . Он будет самосопряжённым и компактным, поскольку является произведением компактного и ограниченного. По предыдущей теореме, существует ортонормированная система $\{\psi_k\}$, в которой $A^*A\psi_k=\mu_k\psi_k$. Легко видеть, что $\mu_k>0$. Положим $\lambda_k:=\sqrt{\mu_k}$ и рассмотрим $\varphi_k=\frac{1}{\lambda_k}A\psi_k$. Можно считать, что μ_k были упорядочены по убыванию. Осталось проверить, что для произвольного вектора x имеет место разложение

$$Ax = \sum_{k=1}^{\infty} \lambda_k(x, \psi_k) \varphi_k.$$

В самом деле, имеем

$$x = \sum_{k=1}^{\infty} (x, \psi_k) \psi_k + x_0, \quad x_0 \in \operatorname{Ker} A^* A.$$

Покажем, что $Ax_0 = 0$. В самом деле, если $A^*Ax_0 = 0$, то $(A^*Ax_0, x_0) = 0$, а это эквивалентно $(Ax_0, Ax_0) = 0$, значит, $Ax_0 = 0$.

Следовательно,

$$Ax = \sum_{k=1}^{\infty} \lambda_k(x, \psi_k) \frac{A\psi_k}{\lambda_k} = \sum_{k=1}^{\infty} \lambda_k(x, \psi_k) \varphi_k,$$

что и требуется. Теперь нужно проверить ортонормированность системы $\{\varphi_k\}$. Имеем

$$(\varphi_k, \varphi_k) = \left(\frac{A\psi_k}{\lambda_k}, \frac{A\psi_k}{\lambda_k}\right) = \frac{1}{\lambda_k^2} \left(A^*A\psi_k, \psi_k\right) = \frac{1}{\lambda_k^2} \left(\lambda_k^2 \psi_k, \psi_k\right) = 1.$$

Далее приводим доказательство Стёпина. Не факт, что оно правильное, а вот приведённое выше доказательство является абсолютно строгим.

Определение. $\mathit{Mepa}\ \mathit{Диракa}\ \delta_p$ — это мера, сосредоточенная в одной точке $p\in X$. Она обозначается δ_p и определяется так:

$$\delta_p(A) := \begin{cases} 1, & p \in A; \\ 0, & p \notin A. \end{cases}$$

Можно рассмотреть новую меру, которая есть линейная комбинация дираковских мер:

$$\sigma(A) = \sum \lambda_i \delta_{p_i}(A).$$

Замечание. Пусть σ — мера на отрезке [a,b]. Пространство $L_2(\sigma)$ конечномерно тогда и только тогда, когда σ -линейная комбинация дираковских мер.

Теорема 2.19 (Гильберта). Для компактного самосопряжённого оператора в сепарабельном гильбертовом пространстве существует ортонормированный базис из собственных векторов.

 \square В силу спектральной теоремы, оператор A может быть реализован как умножение на независимую переменную: $A\colon f(\lambda)\mapsto \lambda f(\lambda)$. Нам хочется рассмотреть оператор, обратный к A, но этому препятствует деление на λ . Откусим от нуля окрестность U, тогда на множестве $K=[-\|A\|,\|A\|]\smallsetminus U(0)$ оператор A обратим: $A^{-1}\colon f(\lambda)\mapsto \frac{1}{\lambda}f(\lambda)$. Но в силу замечания перед доказательством теоремы, в бесконечномерном пространстве не бывает обратимых компактных операторов. Значит, $L_2(\sigma)$ конечномерно на K, поэтому на всём отрезке $[-\|A\|,\|A\|]$ может быть не более чем счётное число атомов меры σ , причём им разрешено сгущаться только в окрестности $\lambda=0$. Ясно [?], что δ -функции будут собственными. Так как спектр замкнут, то если оператор имеет счётное множество точек в спектре, то и ноль принадлежит спектру.

Если пространство сепарабельно, то можно рассмотреть и общий случай, когда циклического вектора не существует. Пусть $\{f_n\}$ — счётное всюду плотное множество в H. В этом случае будем рассматривать циклические подпространства, порождённые векторами f_n . Берём первый вектор f_1 и рассматриваем $\langle f_1 \rangle$, для которого проходит наша процедура. Затем берём ортогональное дополнение к $\langle f_1 \rangle$, в нём выбираем ещё один вектор, и так далее. . . В итоге получим прямую сумму $\bigoplus_{k=1}^{\infty} \langle f_{n_k} \rangle$.

2.2.2. Интегральные операторы Гильберта – Шмидта

Определение. Рассмотрим функцию $K(x,y) \in L_2[a,b]^2$ и оператор $A \colon L_2[a,b] \to L_2[a,b]$, заданный так:

$$A(f) := \int_{a}^{b} K(x, y) f(y) \, dy.$$

Этот оператор называется интегральным оператором Γ ильберта – Шмидта. Функция K называется ядром интегрального оператора. Через A_K мы будем обозначать оператор с ядром K.

Задача 2.1. Доказать, что $A_K^* = A_{\overline{K}}$.

Определение. Cвёртка двух ядер K и L — это ядро

$$(K*L)(x,z) := \int\limits_{-b}^{b} K(x,y) L(y,z) \, dy.$$

Задача 2.2. Докажите, что $A_K A_L = A_{K*L}$.

Для сокращения записи не будем писать пределы интегрирования по [a,b]. Все нормы для функций понимаются в смысле тех пространств, где эти функции живут.

Утверждение 2.20. Интегральный оператор A с ядром K ограничен.

 \square По теореме Фубини интеграл $\int K(x,y)f(y)\,dy$ существует. По неравенству Коши – Буняковского

$$\left| \int K(x,y)f(y) \, dy \right|^2 \leqslant \int \left| K(x,y) \right|^2 \, dy \cdot \int \left| f(y) \right|^2 \, dy.$$

 Θ то неравенство можно проинтегрировать по x, поскольку интеграл в правой части существует. Получим

$$||Af||^2 = \int dx \left| \int K(x,y)f(y) \, dy \right|^2 \le \int dx \int |K|^2 \, dy \cdot \int |f|^2 \, dy = ||K||^2 \cdot ||f||^2.$$

Следующая теорема на лекциях не формулировалась, однако будет использоваться при доказательстве компактности операторов Гильберта – Шмидта. Доказательство этой теоремы можно найти в [2, гл.VII, § 3, п. 5].

Теорема 2.21. Пусть $\{\varphi_n\}$ — полная ортогональная система в $L_2[a,b]$. Тогда всевозможные произведения $\{\varphi_n(x)\cdot\varphi_m(y)\}$ образуют полную ортогональную систему в $L_2[a,b]^2$.

Теорема 2.22. Интегральный оператор Гильберта – Шмидта А с ядром К компактен.

 \square Разложим ядро K нашего оператора по базису пространства $L_2[a,b]^2$:

$$K(x,y) = \sum_{m,n=1}^{\infty} c_{mn} \varphi_m(x) \varphi_n(y).$$

Положим

$$K_N(x,y) = \sum_{m,n=1}^{N} c_{mn} \varphi_m(x) \varphi_n(y).$$

Покажем, что оператор A_N с ядром K_N имеет конечномерный образ. В самом деле,

$$A_N f = \int K_N(x, y) f(y) dy = \sum_{m, n=1}^N c_{mn} \varphi_m(x) \int f(y) \varphi_n(y) dy.$$

то есть образ любой функции f есть конечная линейная комбинация функций $\varphi_m(x)$.

Осталось заметить, что $||A_N - A|| \to 0$, так как $||K_N - K|| \to 0$ в силу того, что это частичные суммы ряда Фурье, а $||A|| \le ||K||$, как следует из доказанного выше утверждения. Значит, оператор A является пределом конечномерных (а значит, компактных) операторов и потому сам компактен.

3. Метрические и топологические пространства

3.1. Топологические пространства. Компактность

3.1.1. Понятие топологии. Открытые и замкнутые множества

Определение. Говорят, что в множестве X определена *топология*, если в X отмечен класс подмножеств $\tau := \{U_{\alpha} \subset X\}$ со следующими свойствами:

- $\emptyset \in \tau$ и $X \in \tau$.
- Если $\{U_1,\ldots,U_n\}\subset \tau$, то и $\bigcap U_i\in \tau$.
- Если $\{U_{\beta}\} \subset \tau$, то и $\bigcup U_{\beta} \in \tau$.

Пару (X, τ) называют топологическим пространством. Множества из τ называются открытыми.

Определение. Basa топологии τ — такая подсистема открытых множеств $\mathcal{B} \subset \tau$, что всякое открытое множество представимо в виде объединения элементов из \mathcal{B} . Эквивалентная формулировка: совокупность \mathcal{B} есть база, если для всякого открытого множества U и всякой точки $x \in U$ найдётся $V \in \mathcal{B}$, для которого $x \in V \subset U$. Говорят, что топология обладает $\mathit{cv\'em}$ ной $\mathit{baso\'em}$, если существует такая база $\mathcal{B} \subset \tau$, что $\mathit{Card} \mathcal{B} \leqslant \aleph_0$.

Определение. Множество называется замкнутым, если дополнение к нему открыто.

Определение. Окрестностью U точки $x \in X$ называется произвольное открытое множество, содержащее эту точку.

Определение. Точка $x \in X$ называется *предельной* точкой множества $M \subset X$, если всякая проколотая окрестность точки x содержит точку множества M.

Определение. Замыканием $\operatorname{Cl} M$ множества $M\subset X$ называется добавление к нему всех его предельных точек.

Утверждение 3.1. *Множество* Cl M *замкнуто*.

 \square Возьмём произвольную точку из дополнения к $\operatorname{Cl} M$. Она обладает окрестностью U, не пересекающейся с множеством $\operatorname{Cl} M$. Теперь пробежимся по всем точкам дополнения и объединим все такие окрестности. Это будет открытое множество, не пересекающееся с $\operatorname{Cl} M$.

Утверждение 3.2. Замкнутое множество содержит все свои предельные точки.

 \square Допустим, что замкнутое множество M пространства X не содержит какой-нибудь своей предельной точки x. Рассмотрим множество $X \smallsetminus M$. Оно содержит точку x и не имеет с M общих точек. Значит, $X \smallsetminus M$ — открытая окрестность точки x, не пересекающаяся с M. Значит, точка x не может быть предельной для M.

Следствие 3.1. Множества, которые не имеют предельных точек, являются замкнутыми.

3.1.2. Компактность. Критерии компактности

Определение. Топологическое пространство называется *компактным*, если из всякого его открытого покрытия можно выделить конечное подпокрытие.

Определение. Система множеств $X_{\alpha} \subset X$ называется *центрированной*, если любое конечное пересечение множеств из этого семейства непусто.

Теорема 3.3 (Критерий компактности в терминах центрированных замкнутых систем). Пространство X компактно тогда и только тогда, когда любая центрированная система замкнутых множеств имеет непустое пересечение.

Пусть X компактно. Рассмотрим произвольную центрированную систему замкнутых множеств $\{F_{\alpha}\}$. Допустим, что $\bigcap F_{\alpha} = \varnothing$. Тогда $X \setminus \bigcap F_{\alpha} = X \setminus \varnothing = X = \bigcup (X \setminus F_{\alpha})$. Множества $X \setminus F_{\alpha}$ открыты, поэтому $\{X \setminus F_{\alpha}\}$ есть открытое покрытие пространства X. Из него можно выделить конечное подпокрытие $\{X \setminus F_i\}_{i=1}^n$, откуда, снова переходя к дополнениям, получаем, что $\bigcap_{i=1}^n F_i = \varnothing$. Это противоречит тому, что исходная система центрирована.

Обратно, рассмотрим произвольное открытое покрытие $X = \bigcup G_{\alpha}$. Тогда $\bigcap (X \setminus G_{\alpha}) = \emptyset$, поэтому эта система не может быть центрированной. Поэтому найдётся конечная подсистема $\{X \setminus G_i\}_{i=1}^n$, для которой $\bigcap_{i=1}^n (X \setminus G_i) = \emptyset$. Тогда $\{G_1, \dots, G_n\}$ будет искомым конечным подпокрытием.

Задача 3.1. Замкнутые подмножества компактных топологических пространств компактны.

Решение. Пусть X — компактное топологическое пространство, и $F \subset X$ — замкнутое подмножество. Рассмотрим произвольное открытое покрытие $\{G_{\alpha}\}$ этого множества. Поскольку $X \setminus F$ открыто, система

$$(X \setminus F) \cup \left(\bigcup G_{\alpha}\right)$$

есть открытое покрытие для X. В силу компактности пространства из неё можно выделить конечное подпокрытие $\{G_1,\ldots,G_n\}$. Исключив из этого подпокрытия множество $X\smallsetminus F$, мы получим конечное открытое подпокрытие для F.

Определение. Множество называется *счётно-компактным*, если любое бесконечное подмножество в нём имеет предельную точку.

Замечание. В этом определении слово «бесконечное» можно заменить на слово «счётное».

Утверждение 3.4. Следующие условия эквивалентны:

- \bullet Пространство X счётно-компактно.
- Всякая счётная центрированная система замкнутых множеств имеет непустое пересечение.
- Всякое счётное открытое покрытие содержит конечное подпокрытие.
- □ Установим сначала эквивалентность первого и второго утверждения.

Пусть X счётно-компактно. Рассмотрим центрированную систему замкнутых подмножеств $\{F_n\}$. Рассмотрим систему вложенных замкнутых множеств

$$S_1 := F_1, S_2 := F_1 \cap F_2, S_3 := F_1 \cap F_2 \cap F_3, \dots$$

Все они непусты, поскольку система центрированная. Если эта последовательность стабилизируется, то всё доказано. Если она убывает, то можно считать, что она убывает строго. Выберем последовательность $x_i \in S_i$, тогда в силу определения счётной компактности, она имеет предельную точку x_0 . Она принадлежит каждому множеству S_i , поскольку они замкнуты, и вся последовательность, за исключением конечного числа точек, содержится в каждом из множеств S_i . Поэтому x_0 принадлежит пересечению всех F_i , значит, оно непусто.

Обратно, пусть нашлась последовательность $\{x_n\}$, у которой нет предельных точек. Следовательно, множества $\{x_n\}_{n\geqslant k}$ замкнуты (у них тем более нет предельных точек). Заметим, что это центрированная система. Но, очевидно,

$$\bigcap_{k=1}^{\infty} \left\{ x_n \right\}_{n \geqslant k} = \varnothing.$$

Значит, эта центрированная система имеет пустое пересечение.

Доказательство эквивалентности второго и третьего утверждений проводится так: в теореме 3.3 заменяем слова «компактность» на «существование среди всякого счётного покрытия конечного подпокрытия», а произвольные центрированные системы заменяем счётными. ■

Утверждение 3.5. Пусть X — пространство со счётной базой. Тогда все покрытия X можно считать счётными.

 \square Пусть $\{U_n\}$ — база топологии. Пусть $X=\bigcup G_\alpha$. Рассмотрим какое-нибудь G_α и произвольную точку x в нём. Найдём такое U_k , что $x\in U_k\subset G_\alpha$. Поступим так со всеми точками x и с каждым G_α , тогда все полученные таким образом множества U_k будут образовывать искомое счётное покрытие. \blacksquare

Определение. Пространство X называется cenapa beaльным, если в нём есть счётное всюду плотное множество.

Утверждение 3.6. Пространство X со счётной базой сепарабельно.

 \square В самом деле, пусть $\{U_n\}$ — счётная база. Возьмём в каждом множестве U_n по одной точке x_n . Покажем, что последовательность $\{x_n\}$ всюду плотна в X. В самом деле, возьмём произвольную точку x и рассмотрим произвольную её окрестность. Она является объединением некоторого набора элементов базы, значит, в эту окрестность попадёт хотя бы одна точка последовательности $\{x_n\}$.

3.2. Метрические пространства

3.2.1. Определение метрического пространства

Определение. Mетрическое nространство — это множество M с функцией $\rho \colon M \times M \to \mathbb{R}$ такой, что:

- $\rho \geqslant 0$, причём для всех $x,y \in M$ выполнено $\rho(x,y)=0$ тогда и только тогда, когда x=y;
- $\rho(x,y) = \rho(y,x)$ для всех $x,y \in M$;
- $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ для всех $x,y,z \in M$ (неравенство треугольника).

Замечание. Всякое нормированное пространство является метрическим пространством. Действительно, легко проверить, что задание метрики по формуле $\rho(x,y) := \|x-y\|$ удовлетворяет аксиомам метрического пространства. Обратное, вообще говоря, неверно.

Определение. Пусть M — метрическое пространство. Говорят, что последовательность $\{x_n\} \subset M$ сходится к $x \in M$, если $\rho(x_n, x) \to 0$. Последовательность $\{x_n\}$ называется фундаментальной, если для $\forall \varepsilon > 0$ найдётся N такое, что для $\forall n, m \geqslant N$ имеем $\rho(x_n, x_m) < \varepsilon$. Метрическое пространство называется полным, если в нём всякая фундаментальная последовательность сходится к некоторой точке этого пространства.

Очевидно, что замкнутое подмножество полного метрического пространства является полным пространством.

3.2.2. ПРИНЦИП СЖИМАЮЩИХ ОТОБРАЖЕНИЙ

Определение. Пусть M — метрическое пространство. Отображение $f: M \to M$ называется *сжимающим*, если найдётся $\alpha \in [0,1)$, для которого $\forall x,y \in M$ имеем $\rho(f(x),f(y)) \leqslant \alpha \cdot \rho(x,y)$.

Теорема 3.7 (О сжимающих отображениях). Пусть M — полное метрическое пространство, а f — сжимающее отображение. Тогда у него существует единственная неподвижная точка.

 \square Единственность такой точки сразу следует из определения сжимающего отображения: если бы их было две, тогда расстояние между ними сохранилось бы, что невозможно. Докажем существование: рассмотрим произвольную точку $y \in M$ и рассмотрим итерации нашего отображения:

$$y, f(y), f(f(y)) = f^{2}(y), f^{3}(y), \dots$$

Положим $y_k = f^k(y)$. Последовательность $\{y_k\}$, очевидно, фундаментальна. В самом деле,

$$\rho(y_k, y_{k+1}) \leqslant \alpha^k \rho(y, y_1),$$

поэтому

$$\rho(y_n, y_m) \leqslant \rho(y_m, y_{m+1}) + \rho(y_{m+1}, y_{m+2}) + \ldots + \rho(y_{n-1}, y_n) = (\alpha^m + \alpha^{m+1} + \ldots + \alpha^n)\rho(y, y_1),$$

а последнее выражение можно сделать маленьким как остаток сходящегося ряда для геометрической прогрессии. В силу полноты пространства, наша последовательность сходится к некоторому пределу $x \in M$. Покажем, что это и есть искомая неподвижная точка. Отображение f, очевидно, является непрерывным, поскольку близкие точки переходят в близкие. По свойствам непрерывных отображений имеем $f(y_k) \to f(x)$, если $y_k \to x$. Поэтому, если $f^k(y) \to x$, то и $f(f^k(y)) \to f(x)$. Но последовательности $\{f^k(y)\}$ и $\{f(f^k(y))\}$ совпадают с точностью до первого члена, поэтому их пределы одинаковы. Следовательно, x = f(x), что и требовалось доказать.

Задача 3.2. Пусть X — полное метрическое пространство, а про непрерывное отображение $f\colon X\to X$ известно, что некоторая его степень f^k является сжимающим отображением. Доказать, что оно имеет единственную неподвижную точку. Можно ли отказаться в этом утверждении от непрерывности f?

Решение. По предыдущей теореме, отображение $F:=f^k$ имеет единственную неподвижную точку x_0 . Очевидно, если x — неподвижная точка отображения f, то она тем более является неподвижной точкой отображения F. Осталось доказать, что x_0 действительно является неподвижной точкой для f. Допустим противное, то есть $f(x_0) = x_1 \neq x_0$. Тогда

$$F(x_1) = F(f(x_0)) = f^k(f(x_0)) = f^{k+1}(x_0) = f(f^k(x_0)) = f(F(x_0)) = f(x_0) = x_1,$$

то есть x_1 является ещё одной неподвижной точкой для F. Противоречие. А непрерывность не нужна!

Задача 3.3. Доказать существенность условия полноты в теореме о сжимающих отображениях.

Решение. Берём полное метрическое пространство — прямую \mathbb{R} , выкалываем из неё точку x=0, получаем неполное метрическое пространство. Рассматриваем отображение $x\mapsto \frac{x}{2}$. Оно, очевидно, сжимающее, но не имеет неподвижных точек, поскольку при $x\neq 0$ равенство $\frac{x}{2}=x$ невозможно.

3.2.3. ТЕОРЕМА О ПОПОЛНЕНИИ МЕТРИЧЕСКИХ ПРОСТРАНСТВ

Определение. Метрическое пространство M называется *ограниченным*, если найдётся $x \in M$ и C > 0, для которых при всех $y \in M$ имеем $\rho(x,y) \leqslant C$.

Определение. Полное пространство $(\widetilde{M},\widetilde{\rho})$ называется *пополнением* метрического пространства (M,ρ) , если найдётся инъекция $\varphi \colon M \to \widetilde{M}$ такая, что $\operatorname{Cl} \varphi(M) = \widetilde{M}$ и для $\forall \, x,y$ имеем $\rho(x,y) = \widetilde{\rho}\big(\varphi(x),\varphi(y)\big)$.

Замечание. В принципе, можно отказаться от требования $\operatorname{Cl} \varphi(M) = \widetilde{M}$, но без него указанное пополнение может оказаться не единственным.

Теорема 3.8. Для всякого метрического пространства (M, ρ) существует пополнение $(\widetilde{M}, \widetilde{\rho})$, причём оно единственно в том смысле, что если $(\widetilde{M}_1, \widetilde{\rho}_1)$ и $(\widetilde{M}_2, \widetilde{\rho}_2)$ — два пополнения одного и того же пространства, то $(\widetilde{M}_1, \widetilde{\rho}_1)$ изометрично $(\widetilde{M}_2, \widetilde{\rho}_2)$.

Доказательство этой теоремы можно прочесть в [2, гл. II, § 3, п. 4].

Задача 3.4. Доказать, что полное метрическое пространство из четырёх точек A,B,C,D с расстояниями $\rho(A,B)=\rho(B,C)=\rho(C,A)=1$ и $\rho(A,D)=\rho(B,D)=\rho(C,D)=\frac{1}{2}$ нельзя вложить в гильбертово пространство.

Решение. Достаточно показать, что в трёхмерном пространстве нет четырёх точек с такими расстояниями. Но это очевидно — шары радиуса $\frac{1}{2}$ с центрами в вершинах правильного треугольника со стороной 1 не имеют общей точки. Комплексный случай сводится к вещественному — достаточно рассмотреть наше пространство как вещественное с тем же скалярным произведением. \blacksquare

А вот доказательство теоремы о пополнении, которое было дано на лекциях. Исходно оно было неверным: ошибка лектора была в том, что нужно было рассматривать непрерывные и *ограниченные* функции.

 \square Для начала докажем это для ограниченных метрических пространств. Рассмотрим пространство $\mathbf{C}(M) \cap \mathbf{B}(M)$ непрерывных ограниченных функций на пространстве M с чебышёвской нормой

$$\operatorname{dist}(f, g) = \sup_{x} |f(x) - g(x)|.$$

Оно, как легко видеть, полное (равномерный предел непрерывных функций непрерывен). Покажем, что существует изометричное вложение $M \hookrightarrow \mathbf{C}(M)$. Построим отображение $\varphi \colon x \mapsto f_x$, где $f_x(y) = \rho(x,y)$. Понятно, что это корректно, поскольку для разных точек эти функции будут иметь нули в разных точках: если $x_1 \neq x_2$, то $f_{x_i}(x_i) = 0$, а $f_{x_1}(x_2) \neq 0 \neq f_{x_2}(x_1)$.

Покажем, что данное вложение является изометрией. Имеем в силу неравенства треугольника

$$dist(f_{x_1}, f_{x_2}) = \sup_{x} |\rho(x_1, x) - \rho(x_2, x)| \leqslant \rho(x_1, x_2),$$

причём при $x=x_1$ получаем как раз значение $\rho(x_1,x_2)$. Вот оно и построено.

3.2.4. ТЕОРЕМА О ВЛОЖЕННЫХ ШАРАХ И ТЕОРЕМА БЭРА О КАТЕГОРИЯХ

В этом параграфе M — метрическое пространство.

Теорема 3.9 (О вложенных шарах). Пусть пространство M полно, $u\left\{B_i(x_i,r_i)\right\}-$ последовательность вложенных замкнутых шаров, причём $r_i \to 0$. Тогда их пересечение непусто.

□ Поскольку $r_i \to 0$, а $B_i \supset B_{i+1}$, последовательность $\{x_i\}$ будет фундаментальной и потому сходится к некоторому $x \in M$ в силу полноты пространства. Покажем, что x является искомой точкой. Действительно, если бы нашёлся шар B_{i_0} такой, что $x \notin B_{i_0}$, тогда бы точка x не лежала бы ни в одном из шаров, начиная с номера i_0 . Но поскольку дополнение к B_{i_0} открыто, x можно отделить окрестностью от всех шаров, начиная с номера i_0 . Это противоречит тому, что x — предел последовательности центров шаров. \blacksquare

Замечание. Очевидно, что в силу сходимости $r_i \to 0$ это пересечение будет состоять из одной точки. Действительно, если бы их было две, то расстояние d между ними было бы ненулевое. Когда радиусы шаров станут меньше, чем $\frac{d}{3}$, эти две точки не поместятся в шаре такого радиуса одновременно.

Задача 3.5. Показать существенность требования $r_i \to 0$ в теореме о вложенных шарах.

Решение. В качестве примера, подтверждающего необходимость этого условия, рассмотрим пространство $\mathbb N$ с метрикой

$$\rho(n,m) := \begin{cases} 0, & m = n, \\ 1 + \frac{1}{m} + \frac{1}{n}, & m \neq n. \end{cases}$$
 (1)

Рассмотрим замкнутые шары B_n с центрами в точках n и радиусами $1+\frac{2}{n}$. Тогда они все вложены друг в друга, но их пересечение пусто. В самом деле, шар B_n состоит из точек m таких, что $m \geqslant n$, потому что лишь при таких m имеем $1+\frac{1}{m}+\frac{1}{n}\leqslant 1+\frac{2}{n}$. Таким образом, центры шаров находятся «с краю», и пересечение $\bigcap[n,+\infty)=\varnothing$.

Задача 3.6. Показать, что для банаховых пространств требование $r_i \to 0$ можно убрать.

Определение. Множество $Y \subset M$ называется *нигде не плотным* в M, если всякий шар $B \subset M$ ненулевого радиуса содержит другой шар B' ненулевого радиуса такой, что $Y \cap B' = \emptyset$.

Утверждение 3.10. Замыкание нигде не плотного множества М является нигде не плотным.

 \square Допустим, что замыкание плотно в некотором шаре B. Это означает, что всякий шар B' внутри B содержит точку из $\operatorname{Cl} M$, но это значит, что где-то рядом есть и точка из множества M, причём можно считать, что эта точка принадлежит B'. Но это означает, что M плотно в B. Противоречие.

Определение. Множество $Y \subset M$ называется всюду плотным в M, если $\operatorname{Cl} Y = M$.

Определение. Множество Y называется *множеством первой категории*, если оно может быть представлено как счётное объединение нигде не плотных множеств.

Теорема 3.11 (Бэра о категориях). Полное метрическое пространство M не может быть множеством первой категории.

□ Допустим, что $M = \bigcup Y_i$, причём Y_i нигде не плотны. Рассмотрим множество Y_1 , тогда найдётся замкнутый шар B_1 , для которого $B_1 \cap Y_1 = \emptyset$. Рассмотрим множество Y_2 и возьмём $B_2 \subset B_1$ так, чтобы $B_2 \cap Y_2 = \emptyset$. Продолжим этот процесс, получим последовательность замкнутых шаров $\{B_i\}$. По теореме о вложенных шарах найдётся $x \in \bigcap B_i$, но это означает, что x не лежит ни в одном из Y_i .

3.2.5. КОМПАКТНЫЕ МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Определение. Пусть X — метрическое пространство. Множество $M \subset X$ называется *компактным*, если из любой последовательности $\{x_i\} \subset M$ можно выделить подпоследовательность, сходящуюся к $x \in M$.

Определение. Множество M называется $npe\partial komnakmhыm$, если из любой последовательности $\{x_i\} \subset M$ можно выделить фундаментальную подпоследовательность.

Определение. Говорят, что множество N образует ε -cemb для множества M, если в ε -окрестности любой точки $x \in M$ найдётся точка из N.

Замечание. Иногда требуют, чтобы множество N содержалось в самом множестве M, но, как несложно показать, эти определения эквивалентны.

Определение. Множество M называется *вполне ограниченным*, если для всякого $\varepsilon > 0$ существует конечная ε -сеть для M.

Теорема 3.12 (Критерий Хаусдорфа). Бесконечное подмножество M в метрическом пространстве предкомпактно тогда и только тогда, когда для $\forall \, \varepsilon > 0$ существует конечная ε -сеть для M.

Пусть нашлось такое $\varepsilon_0 > 0$, что для него не существует конечной ε_0 -сети. Иначе говоря, всякое конечное семейство окрестностей радиуса ε_0 не может покрыть всё множество M. Возьмём $x_1 \in M$ и накроем его ε_0 -окрестностью U_1 . Набор $\{U_1\}$ не покрывает M, поэтому найдётся $x_2 \in M \setminus U_1$. Накроем его окрестностью U_2 , но $\{U_1, U_2\}$ снова не покроет всё множество M. Выбирая $x_3 \in M \setminus (U_1 \cup U_2)$ и так далее, получим последовательность, у которой $\rho(x_i, x_j) \geqslant \varepsilon_0$, поэтому из неё нельзя выделить фундаментальную. Таким образом, M не предкомпактно.

Обратно, пусть для $\forall \varepsilon > 0$ существует конечная ε -сеть. Пусть $\{x_i\} \subset M$ — произвольная последовательность, выделим из неё фундаментальную. Возьмём 1-сеть, тогда найдётся окрестность, в которой бесконечно много членов последовательности. Выберем оттуда один элемент x_1^* и в качестве новой последовательности возьмём только то, что попало в эту окрестность. Далее, существует конечная $\frac{1}{2}$ -сеть, покрывающая новую последовательность. Снова выберем ту окрестность сети, в которой бесконечно много элементов, и в ней возьмём произвольный x_2^* . Продолжим этот процесс, то есть на n-м шаге будем выбирать $\frac{1}{2^n}$ -сеть. Ясно, что последовательность $\{x_i^*\}$ будет фундаментальна.

Следствие 3.2. Любое компактное метрическое пространство сепарабельно.

 \square Пусть X — компактное метрическое пространство. Покажем, что X полно. В самом деле, если $\{x_n\}$ — фундаментальная последовательность, то по определению компактности из неё можно выделить подпоследовательность, сходящуюся к некоторому элементу $x \in X$. Но из этого, очевидно, следует, что к x сходится и вся последовательность. Значит, X полно.

Построим в X счётное всюду плотное множество D. По критерию Хаусдорфа, для $\forall \varepsilon$ в X существует

22 4.1.1. Основные понятия

конечная ε -сеть $C_{\varepsilon} := \{x_1^{\varepsilon}, \dots, x_{k_{\varepsilon}}^{\varepsilon}\}$. Рассмотрим

$$D = \bigcup_{n=1}^{\infty} C_{\frac{1}{n}}.$$

Очевидно, что D счётно и всюду плотно в X.

4. Нормированные и банаховы пространства

4.1. Линейные функционалы и операторы

4.1.1. Основные понятия

Пусть X — линейное пространство над полем \mathbb{C} .

Определение. Hopma — функция $\|\cdot\|: X \to \mathbb{R}_+$ со свойствами:

- $\mathbf{1}^{\circ}$ Для $\forall x,y \in X$ имеем $\|x+y\| \leqslant \|x\| + \|y\|$ неравенство треугольника.
- $\mathbf{2}^{\circ}$ Для $\forall x \in X, \ \forall \alpha \in \mathbb{C}$ имеем $\|\alpha x\| = |\alpha| \cdot \|x\|$ однородность.
- $\mathbf{3}^{\circ}$ Для $\forall x \in X$ из ||x|| = 0 следует x = 0 точность.

Определение. Линейный оператор $A\colon X\to X$ называется *ограниченным*, если $\exists\, C>0\colon \|Ax\|\leqslant C\,\|x\|$ для всех $x\in X$.

Определение. Hopma линейного оператора — число $||A|| := \sup_{x \neq 0} \frac{||Ax||}{||x||}$.

Задача 4.1. Доказать, что $\|A\|$ совпадает с числом inf C, где C — константа из определения ограниченного оператора. Доказать, что норму можно определять и так: $\|A\| = \sup_{\|x\|=1} \|Ax\|$.

Задача 4.2. Пусть A, B — ограниченные операторы. Доказать, что $||AB|| \leq ||A|| \cdot ||B||$.

Решение. Имеем $\|AB\| = \sup_{x \neq 0} \frac{\|ABx\|}{\|x\|} \leqslant \sup_{x \neq 0} \frac{\|A\| \cdot \|Bx\|}{\|x\|} = \|A\| \cdot \|B\|$. \blacksquare

Задача 4.3. Доказать, что ограниченность оператора равносильна его непрерывности.

Буквой I мы будем обозначать тождественный оператор $I: X \to X$.

Очевидно, что вектор $x \neq 0$ является собственным с собственным значением λ тогда и только тогда, когда $x \in \text{Ker}(A - \lambda I)$.

Определение. Обратным к ограниченному оператору A называется такой ограниченный оператор B, что AB = BA = I.

4.1.2. СПЕКТР ОПЕРАТОРА

Определение. Пусть A — ограниченный оператор. Рассмотрим оператор A — λI . Спектром оператора называется множество точек $\lambda \in \mathbb{C}$, для которых не существует ограниченного обратного оператора к A — λI . Мы будем обозначать спектр оператора A через $\Sigma(A)$.

Определение. Точки, лежащие в дополнении к спектру, называются регулярными.

Определение. Пусть $A \colon X \to X$ — ограниченный оператор. *Резольвентой* оператора называется функция

$$\mathcal{R}_A \colon \mathbb{C} \setminus \Sigma(A) \to \operatorname{End} X, \quad \mathcal{R}_A(z) := (A - zI)^{-1}.$$

4.1.3. НЕПУСТОТА СПЕКТРА ОГРАНИЧЕННОГО ОПЕРАТОРА

Лемма 4.1 (Тождество Гильберта). Для резольвенты оператора А имеет место формула

$$\mathcal{R}(z) - \mathcal{R}(w) = (z - w)\mathcal{R}(z)\mathcal{R}(w).$$

 \square Рассмотрим тождество (A-wI)-(A-zI)=(z-w)I. Домножим слева на оператор $\mathcal{R}(z)$, а справа на $\mathcal{R}(w)$, получим

$$\mathcal{R}(z)(A - wI)\mathcal{R}(w) - \mathcal{R}(z)(A - zI)\mathcal{R}(w) = \mathcal{R}(z)(z - w)\mathcal{R}(w).$$

После сокращения прямых и обратных операторов получим $\mathcal{R}(z) - \mathcal{R}(w) = (z - w)\mathcal{R}(z)\mathcal{R}(w)$.

Лемма 4.2. Резольвента является дифференцируемой операторнозначной функцией.

□ Используя определение производной и тождество Гильберта, получаем

$$\mathcal{R}'(z) := \lim_{h \to 0} \frac{\mathcal{R}(z+h) - R(z)}{h} = \lim_{h \to 0} \frac{(z+h-z)\mathcal{R}(z+h)\mathcal{R}(z)}{h} = \mathcal{R}^2(z).$$

Теорема 4.3. Спектр ограниченного оператора непуст.

 \square Допустим противное, тогда резольвента определена для любого $z\in\mathbb{C}$. Заметим, что $\mathcal{R}(z)\to 0$ при $z\to\infty$. В самом деле,

$$(A - zI)^{-1} = \left(-z\left(I - \frac{A}{z}\right)\right)^{-1} = -\frac{1}{z}\left(I - \frac{A}{z}\right)^{-1} \to 0,$$

ибо второй множитель ограничен, а первый стремится к 0.

Рассмотрим какой-нибудь функционал $\varphi \in X^*$. Рассмотрим функцию $f(z) := \varphi(\mathcal{R}(z)x)$. Покажем, что f — целая функция. Продифференцируем её:

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{\varphi(\mathcal{R}(z+h)x) - \varphi(\mathcal{R}(z)x)}{h} = \lim_{h \to 0} \varphi\left(\frac{\mathcal{R}(z+h) - \mathcal{R}(z)}{h}x\right) = \varphi(\mathcal{R}^2(z)x).$$

По доказанному выше, $f(z) \to 0$ при $z \to \infty$. Таким образом, f определена всюду и ограничена. По теореме Лиувилля $f \equiv \text{const}$, но так как $f(\infty) = 0$, то $f \equiv 0$. Следовательно, для всякого x и произвольного функционала φ имеем $\varphi(\mathcal{R}^2(z)x) = 0$. По следствию из теоремы Хана – Банаха, $\mathcal{R}^2(z)x = 0$ для всякого x. Но это означает, что резольвента $\mathcal{R}(z)$ является тождественно нулевым оператором при всех z, что невозможно.

4.1.4. TEOPEMA XAHA-BAHAXA

Определение. Пусть (P, \prec) — частично упорядоченное множество. *Цепью* называется произвольное подмножество в P, в котором любые два элемента сравнимы. Элемент $p \in P$ называется *максимальным*, если из $p \prec q$ следует, что p = q. Элемент $p \in P$ для цепи S называется верхней гранью, если для $\forall q \in S$ имеем $q \prec p$.

Утверждение 4.4 (Лемма Цорна). Пусть (P, \prec) — частично упорядоченное множество. Если для любой цепи подмножества P существует верхняя грань, то существует максимальный элемент в P.

Теорема 4.5 (Хана – Банаха о продолжении функционалов). Пусть X — нормированное пространство. Пусть L — подпространство в X, а f — ограниченный вещественный функционал на L. Тогда существует функционал $\varphi\colon X\to\mathbb{R}$ такой, что $\|\varphi\|=\|f\|$ и φ

 \square Вначале покажем, что f можно продолжить указанным образом на подпространство $M:=L\oplus\langle x_0\rangle$, где $x_0\notin L$. Всякий вектор $x\in M$ однозначно представляется в виде $x=v+tx_0$, где $v\in L$.

Пусть $x, y \in L$, тогда

$$f(x) - f(y) = f(x - y) \le ||f|| \cdot ||x - y|| \le ||f|| \cdot ||x + x_0|| + ||f|| \cdot ||y + x_0||,$$

поэтому

$$f(x) - ||f|| \cdot ||x + x_0|| \le f(y) + ||f|| \cdot ||y + x_0||.$$

Перейдём слева к верхней грани по $x \in L$, а справа к нижней грани по $y \in L$. Получим

$$S := \sup_{x \in L} (f(x) - \|f\| \cdot \|x + x_0\|) \leqslant \inf_{y \in L} (f(y) + \|f\| \cdot \|y + x_0\|) =: I.$$

Возьмём число $c \in [S, I]$. Рассмотрим функционал φ на M, заданный так:

$$\varphi(x+tx_0) := f(x) - tc.$$

Он, очевидно, линеен и совпадает с f на L. Докажем, что $\|\varphi\| = \|f\|$.

Пусть t > 0. Тогда

$$|\varphi(x+tx_0)| = t \left| f\left(\frac{x}{t}\right) - c \right|.$$

Покажем, что

$$\left| f\left(\frac{x}{t}\right) - c \right| \le \|f\| \cdot \left\| \frac{x}{t} + x_0 \right\|.$$

В самом деле, $c\geqslant \sup_{x\in L} \left(f(x)-\|f\|\cdot\|x+x_0\|\right)$, значит, в частности, $c\geqslant f\left(\frac{x}{t}\right)-\|f\|\cdot\|\frac{x}{t}+x_0\|$. Аналогично, $c\leqslant \inf_{x\in L} \left(f(x)+\|f\|\cdot\|x+x_0\|\right)$, значит, в частности, $c\leqslant f\left(\frac{x}{t}\right)+\|f\|\cdot\|\frac{x}{t}+x_0\|$. Следовательно, оценка верна. Поэтому

$$|\varphi(x+tx_0)| = t \left| f\left(\frac{x}{t}\right) - c \right| \le t \|f\| \cdot \left\| \frac{x}{t} + x_0 \right\| = \|f\| \cdot \|x + tx_0\|.$$

Аналогичная оценка получается для t < 0. Таким образом, $\|\varphi\| \leqslant \|f\|$, но при продолжении норма не может уменьшиться. Итак, $\|f\| = \|\varphi\|$.

Для сепарабельных пространств дальнейшие рассуждения очевидны. Покажем, как действовать в случае, когда сепарабельности нет. Рассмотрим всевозможные продолжения f и введём на них частичный порядок: будем считать, что $f_1 \prec f_2$, если $\mathrm{Dom}\, f_1 \subset \mathrm{Dom}\, f_2$ и $f_1 = f_2$ на $\mathrm{Dom}\, f_1$. Пусть $\{f_\alpha\}$ — произвольная цепь. Обозначим $L_\alpha := \mathrm{Dom}\, f_\alpha$ и покажем, что её верхней гранью является функционал \widehat{f} , определённый на $\bigcup_\alpha L_\alpha$,

причём $\widehat{f}(x) = f_{\alpha}(x)$, если $x \in L_{\alpha}$. Действительно, очевидно, что \widehat{f} линеен и $\|\widehat{f}\| = \|f\|$. По лемме Цорна множество продолжений имеет максимальный элемент. Он определён на всём X, в противном случае его можно было бы продолжить.

4.1.5. ЛЕММА РИССА О ПОЧТИ ПЕРПЕНДИКУЛЯРЕ

Лемма 4.6 (Рисса о почти перпендикуляре). Пусть X — нормированное пространство, а $Y \subsetneq X$ — замкнутое подпространство. Тогда для всякого $\varepsilon > 0$ существует «почти перпендикуляр» $x \in X$ такой, что $\|x\| = 1$, а $\rho(x,Y) > 1 - \varepsilon$.

Поскольку $Y \neq X$ и замкнуто, найдётся $z \neq 0$, для которого $\rho(z,Y) = a > 0$. Тогда найдётся последовательность $y_i \in Y$, для которых имеем $\rho(z,y_i) = \|z-y_i\| \to \rho(z,Y)$. Имеем $a = \rho(z,Y) \stackrel{!}{=} \rho(z-y_i,Y)$. В пояснении нуждается только переход, отмеченный знаком «!», и следует он из того, что всякое линейное пространство инвариантно относительно сдвигов на ceou векторы. По определению расстояния, найдётся i, для которого $\|z-y_i\| \leqslant \frac{a}{1-\varepsilon}$. Тогда

$$\rho\left(\frac{z-y_i}{\|z-y_i\|},Y\right) = \frac{1}{\|z-y_i\|} \cdot a \geqslant \frac{1-\varepsilon}{a} \cdot a = 1-\varepsilon.$$

Таким образом, вектор $x=\frac{z-y_i}{\|z-y_i\|}$ — искомый. \blacksquare

4.1.6. ЛЕММА О ПРОДОЛЖЕНИИ ФУНКЦИОНАЛА

Лемма 4.7. Пусть $Y \subsetneq X$ — замкнутое подпространство, и пусть $x \notin Y$. Тогда существует ограниченный функционал f такой, что f(x) = 1 и f(Y) = 0.

 \square В самом деле, на векторах из $\langle x,Y \rangle$ положим $f(\lambda x+y)=\lambda$. Далее этот функционал можно продолжить на всё пространство с сохранением нормы по теореме Хана – Банаха. Осталось понять, почему этот функционал ограничен на $\langle x+Y \rangle$. Действительно,

$$|f(\lambda x + y)| = |\lambda| = \frac{|\lambda| \cdot ||\lambda x + y||}{||\lambda x + y||} = \frac{||\lambda x + y||}{||x + \frac{y}{\lambda}||} \leqslant \frac{1}{\rho} ||\lambda x + y||,$$

где $\rho = \rho(x,Y) > 0$. Таким образом, норма нашего функционала ограничена числом $\frac{1}{\rho}$.

4.1.7. Критерий конечномерности пространства

Лемма 4.8. Нормированное пространство X конечномерно тогда и только тогда, когда в нём всякое бесконечное ограниченное множество предкомпактно.

 \square Всякое бесконечное ограниченное множество в конечномерном пространстве предкомпактно, поскольку в этом случае $X \cong \mathbb{C}^n$ (или \mathbb{R}^n), а для этих пространств предкомпактность эквивалентна ограниченности.

Обратно, пусть всякое ограниченное подмножество в L предкомпактно. Допустим, что X бесконечномерно, тогда возьмём единичный вектор $e_1 \in X$. По предположению, $X \neq X_1 := \langle e_1 \rangle$, тогда по лемме Рисса найдётся единичный вектор $e_2 \notin X_1$, для которого $\rho(e_2, X_1) \geqslant \frac{1}{2}$. Вновь по предположению $X \neq X_2 := \langle e_1, e_2 \rangle$, тогда построим ещё один вектор e_3 , для которого $\rho(e_3, X_2) \geqslant \frac{1}{2}$, и так далее. Цепочка подпространств X_n будет строго возрастать, и последовательность $\{e_i\}$ будет ограниченным и не предкомпактным множеством, так как расстояние между любыми двумя её элементами не меньше $\frac{1}{2}$.

4.1.8. ТЕОРЕМА БАНАХА – ШТЕЙНГАУЗА

Лемма 4.9. Если замкнутое множество не содержит ни одного шара положительного радиуса, то оно нигде не плотно.

 \square Если M не является нигде не плотным, то найдётся шар B положительного радиуса такой, что для всякого шара $B' \subset B$ имеем $M \cap B' \neq \emptyset$. Это означает, что M всюду плотно в B, но тогда $B \subset M$, ибо M замкнуто (оно содержит все свои предельные точки). \blacksquare

Теорема 4.10 (Принцип равномерной ограниченности Банаха – Штейнгауза). Пусть X- банахово, а Y- нормированное пространство. Пусть $A_i\colon X\to Y-$ семейство ограниченных операторов. Пусть для всякого $x\in X$ существует число $C_x>0$ такое, что для $\forall i$ имеем $\|A_ix\|\leqslant C_x$. Тогда найдётся такое C>0, что $\|A_i\|\leqslant C$ для всех i.

□ Рассмотрим семейство множеств

$$X_n := \{x \in X \colon \forall i \text{ имеем } ||A_i x|| \leqslant n \}.$$

Очевидно, что $X = \bigcup X_n$. Поскольку X не есть множество первой категории, найдётся X_N такое, что оно не является нигде не плотным в X. Значит, есть шар, где оно всюду плотно.

Покажем, что все множества X_n замкнуты. Для этого докажем, что дополнения к ним открыты. Пусть $x \notin X_n$. Значит, $\exists \, k$, для которого $\|A_k x\| \geqslant n + 2\varepsilon$. Пусть $v \in X$. Если $\|v\| \leqslant \frac{\|A_k x\| - (n + \varepsilon)}{\|A_k\|}$, то

$$||A_k(x+v)|| = ||A_kx + A_kv|| \ge ||A_kx|| - \frac{||A_k|| (||A_kx|| - (n+\varepsilon))}{||A_k||} = n + \varepsilon > n,$$
(1)

то есть $(x+v) \notin X_n$.

По предыдущей лемме, множество X_N содержит некоторый шар B. Достаточно установить равномерную ограниченность операторов на некотором шаре, содержащем начало координат. Пусть \widetilde{B} — копия шара B с центром в начале координат. Каждый вектор $v \in \widetilde{B}$ можно представить как $w_1 - w_2$, где $w_i \in B$. По неравенству треугольника и определению множества X_N для всех i получаем $||A_iv|| = ||A_iw_1 - A_iw_2|| \leqslant N + N = 2N$. Но это и означает равномерную ограниченность.

Замечание. В этой теореме множество операторов может иметь произвольную мощность.

4.1.9. ПРОСТРАНСТВО ОГРАНИЧЕННЫХ ОПЕРАТОРОВ

Пусть X и Y — нормированные пространства. Обозначим через $\mathcal{L}(X,Y)$ множество всех линейных отображений $A\colon X\to Y$. Это, очевидно, линейное пространство. В нём можно выделить подпространство ограниченных линейных операторов $\mathcal{B}(X,Y)$. Если X=Y, то это пространство превращается в алгебру.

Определение. Говорят, что $A_n \stackrel{\mathrm{s}}{\longrightarrow} A$ в $\mathscr{B}(X,Y)$ («сильно» сходится), если для $\forall x \in X$ имеем $A_n x \to A x$ по норме пространства Y.

Утверждение 4.11. Если пространства X и Y банаховы, то пространство $\mathcal{B}(X,Y)$ полно относительно сильной сходимости, то есть сильный предел ограниченных операторов также является ограниченным оператором.

Пусть для всякого $x \in X$ последовательность $\{A_n x\}$ фундаментальна. Покажем, что существует ограниченный оператор A такой, что $A_n \stackrel{\text{s}}{\longrightarrow} A$. В силу фундаментальности, для $\forall x$ последовательность $\{A_n x\}$ ограничена. Из теоремы Банаха – Штейнгауза следует, что $\|A_n\| \leqslant K$, то есть последовательность операторов ограничена по норме. В силу полноты пространства Y, последовательность $A_n x$ сходится к некоторому вектору, который мы обозначим Ax. Отсюда, в частности, следует, что $\|A_n x\| \to \|Ax\|$. Из равномерной ограниченности следует, что $\|A_n x\| \leqslant K \|x\|$. Осталось перейти в этом неравенстве к пределу при $n \to \infty$, и мы получим, что $\|Ax\| \leqslant K \|x\|$, то есть норма предельного оператора тоже не превосходит K. ■

Утверждение 4.12. Если пространство Y банахово, то пространство $\mathcal{B}(X,Y)$ полно относительно операторной нормы.

 \square Пусть $\{A_n\}\subset \mathscr{B}(X,Y)$ — фундаментальная последовательность. Тогда

$$||A_n x - A_{n+p} x|| \le ||A_n - A_{n+p}|| \cdot ||x|| \to 0,$$

поскольку $||A_n - A_{n+p}|| \to 0$. Отсюда, в силу банаховости Y, последовательность $A_n x$ сходится к некоторому вектору, который мы обозначим Ax. Так как последовательность норм операторов фундаментальна, она ограничена, то есть $||A_n|| \le K$. Отсюда $||A_n x|| \le K ||x||$, и после перехода к пределу получаем $||Ax|| \le K ||x||$.

Покажем, что $||A_n - A|| \to 0$. Для этого достаточно показать, что для $\forall x$ такого, что $||x|| \leqslant 1$, выполняется неравенство $||A_n x - Ax|| \leqslant \varepsilon \, ||x||$. В самом деле, в силу фундаментальности для $\forall \, \varepsilon > 0$ найдётся N такое, что для $\forall \, n \geqslant N$ и для $\forall \, p$ выполнено $||A_n x - A_{n+p} x|| \leqslant \varepsilon \, ||x||$. Остаётся перейти к пределу при $p \to \infty$.

Утверждение 4.13 (О продолжении оператора по непрерывности). Пусть $X_0 \subset X$ — всюду плотное подпространство в банаховом пространстве X. Пусть $A_0 \colon X_0 \to X$ — ограниченный линейный оператор. Тогда существует ограниченное продолжение $A \colon X \to X$ оператора A_0 с сохранением нормы.

 \square Возьмём последовательность $\{\xi_n\}\subset X_0$, которая сходится к вектору x. Рассмотрим образ этой последовательности под действием оператора A_0 . Положим $Ax:=\lim A_0\xi_n$. Этот предел существует, так как $\|A_0\xi_n-A_0\xi_m\|\leqslant \|A_0\|\cdot \|\xi_n-\xi_m\|\to 0$.

Покажем, что такое определение корректно, то есть не зависит от выбора последовательности, приближающей x. Пусть $\xi_n \to x \leftarrow \eta_n$. Рассмотрим третью последовательность $\{\zeta_n\} := \xi_1, \eta_1, \xi_2, \eta_2, \ldots$ Она тоже сходится к x, и $\lim A_0 \zeta_n$ тоже существует. Осталось заметить, что $\lim A_0 \xi_n$ и $\lim A_0 \eta_n$ — это частичные пределы сходящейся последовательности, значит, они совпадают.

Получилось отображение $A\colon X\to X$, а так как $\|A_0\xi_n\|\leqslant \|A_0\|\cdot \|\xi_n\|$, то, переходя к пределу, получаем, что $\|Ax\|\leqslant \|A_0\|\cdot \|x\|$. Значит, норма продолженного оператора не увеличилась. С другой стороны, ясно, что она не могла уменьшиться.

4.1.10. ТЕОРЕМА БАНАХА ОБ ОБРАТНОМ ОПЕРАТОРЕ

Лемма 4.14. Пусть $A: X \to Y$ — линейная биекция банаховых пространств. Положим

$$Y_k := \{ y \in Y : ||A^{-1}y|| \le k ||y|| \}.$$

Тогда существует такое Y_N , что $\operatorname{Cl} Y_N = Y$.

 \square Поскольку Y — полное пространство, по теореме Бэра существует Y_M , плотное в некотором шаре B. Обозначим через P пересечение некоторого шарового слоя с центром в точке $y_0 \in Y_M$, целиком лежащего в шаре B, с множеством Y_M . Рассмотрим копию \widetilde{P} множества P, сдвинутую в начало координат. Всякий вектор $v \in \widetilde{P}$ представляется в виде разности $y-y_0$, где $y \in P$. Имеем

$$||A^{-1}v|| = ||A^{-1}(y - y_0)|| \le ||A^{-1}y|| + ||A^{-1}y_0|| \le M(||y|| + ||y_0||) =$$

$$= M(||y - y_0 + y_0|| + ||y_0||) \le M(||y - y_0|| + 2||y_0||) = M||y - y_0|| \left(1 + \frac{2||y_0||}{||y - y_0||}\right).$$

Заметим, что последний множитель может быть ограничен сверху некоторой константой C, не зависящей ни от чего, поскольку число $\|y-y_0\|$ отделено от нуля. Беря в качестве N:=[CM]+1, получаем, что Y_N плотно в \widetilde{P} . Но поскольку в силу своего определения множество Y_N инвариантно относительно гомотетий, оно будет плотно и во всём пространстве. \blacksquare

Теорема 4.15 (Банаха об обратном операторе). Пусть $A: X \to Y$ — линейная биекция банаховых пространств. Тогда обратное отображение $A^{-1}: Y \to X$ тоже будет ограниченным оператором.

Пинейность обратного отображения очевидна. Докажем ограниченность. Рассмотрим ненулевой вектор $y \in Y$. По предыдущей лемме существует всюду плотное в Y множество Y_N . Тогда существует $y_1 \in Y_N$, для которого $\|y-y_1\| \leqslant \frac{\|y\|}{2}$, причём $\|y_1\| \leqslant \|y\|$. Далее, существует $y_2 \in Y_N$, для которого $\|y-(y_1+y_2)\| \leqslant \frac{\|y\|}{2^n}$, причём $\|y_2\| \leqslant \frac{\|y\|}{2}$, и так далее. На n-м шаге существует $y_n \in Y_N$, для которого $\|y-(y_1+y_2+\ldots+y_n)\| \leqslant \frac{\|y\|}{2^n}$, причём $\|y_n\| \leqslant \frac{\|y\|}{2^{n-1}}$.

Рассмотрим $x_n := A^{-1}y_n$. По определению Y_N имеем $||x_n|| \le N ||y_n|| \le N \frac{||y||}{2^{n-1}}$. Значит, в силу полноты пространства X и сходимости ряда $\sum ||x_n||$ существует предел

$$x := \lim_{p \to \infty} \sum_{n=1}^{p} x_n.$$

Тогда

$$Ax = A\left(\lim_{p \to \infty} \sum_{n=1}^{p} x_n\right) = \lim_{p \to \infty} \sum_{n=1}^{p} Ax_n = \lim_{p \to \infty} \sum_{n=1}^{p} y_n = y.$$

Отсюда $A^{-1}y = x$, поэтому

$$||A^{-1}y|| = ||x|| = \left\| \sum_{n=1}^{\infty} x_n \right\| = \lim_{p \to \infty} \left\| \sum_{n=1}^{p} x_n \right\| = \lim_{p \to \infty} \left\| \sum_{n=1}^{p} A^{-1} y_n \right\| \le \sum_{n=1}^{\infty} N \|y_n\| \le \sum_{n=1}^{\infty} N \frac{\|y\|}{2^{n-1}} = 2N \|y\|.$$

Следовательно, оператор A^{-1} ограничен.

4.1.11. Устойчивость обратимости оператора при малых возмущениях

Лемма 4.16. Если $A \colon X \to X$ — оператор в банаховом пространстве такой, что $\|A\| < 1$, то оператор I - A обратим.

□ Покажем, что оператор

$$P := \sum_{i=0}^{\infty} A^i$$

является обратным к оператору I-A. Операторный ряд следует понимать как предел частичных сумм. Покажем, что он сходится, то есть для каждого вектора $x \in X$ последовательность частичных сумм

$$S_n x := \sum_{i=0}^n A^i x$$

фундаментальна. В самом деле, если m > n, то

$$||S_m x - S_n x|| = ||A^{n+1} x + \ldots + A^m x|| \le ||A^{n+1} x|| + \ldots + ||A^m x|| \le ||x|| (||A||^{n+1} + \ldots + ||A||^m),$$

поэтому, если взять n достаточно большим, эту сумму можно сделать сколь угодно маленькой как хвост сходящегося ряда $\sum \|A\|^i$. В силу полноты пространства, эта последовательность сходится. Очевидно, что

$$||Px|| \le ||x|| \sum_{i=0}^{\infty} ||A||^{i},$$

поэтому оператор P ограничен. Из определения P выводим, что

$$P(I - A)x = \lim_{n \to \infty} \sum_{i=0}^{n} A^{i}(I - A)x = \lim_{n \to \infty} \sum_{i=0}^{n} (A^{i}x - A^{i+1}x) = \lim_{n \to \infty} (x - A^{n+1}x) = x,$$

так как ||A|| < 1 и второе слагаемое в пределе даёт нуль. Тем самым доказано, что P является левым обратным. Покажем, что он и правый обратный. В самом деле, оператор I-A ограничен и, очевидно, перестановочен с операторами S_n . Поэтому

$$(I - A)P = (I - A)\lim_{n \to \infty} S_n = \lim_{n \to \infty} (I - A)S_n = \lim_{n \to \infty} S_n(I - A) = P(I - A).$$

Таким образом, оператор I-A обратим.

Теорема 4.17 (Устойчивость обратимости при малых возмущениях). Пусть $A\colon X\to X$ — ограниченный обратимый оператор в банаховом пространстве. Тогда для всякого оператора B с нормой $\|B\|<\frac{1}{\|A^{-1}\|}$ оператор A+B обратим.

 \square Ясно, что A+B обратим тогда и только тогда, когда обратим оператор $A^{-1}(A+B) = I + A^{-1}B$. Поскольку оператор A ограничен, по теореме Банаха оператор A^{-1} тоже ограничен. Так как $\|A^{-1}B\| \leqslant \|A^{-1}\| \cdot \|B\| < 1$ по условию, то в силу предыдущей леммы оператор $I+A^{-1}B$ обратим.

При доказательстве леммы фактически была доказана формула: если ||A|| < 1, то

$$(I - A)^{-1} = \sum_{i=0}^{\infty} A^{i}.$$
 (2)

Следствие 4.1. Резольвента является аналитической функцией в своей области определения.

 \square Сумма степенного ряда голоморфна в круге сходимости. \blacksquare Получим из формулы (2) некоторую оценку для числа $\|(A+B)^{-1}-A^{-1}\|$ при условии $\|B\|<\frac{1}{\|A^{-1}\|}$. Имеем $A+B=A(I+A^{-1}B)$, поэтому $(A+B)^{-1}=(I+A^{-1}B)^{-1}A^{-1}$. По формуле (2) получаем:

$$(A+B)^{-1} = \sum_{n=0}^{\infty} (-1)^n (A^{-1}B)^n A^{-1}.$$

Отсюда

$$\left\| (A+B)^{-1} - A^{-1} \right\| = \left\| \sum_{n=0}^{\infty} (-1)^n (A^{-1}B)^n A^{-1} + A^{-1} \right\| \leqslant \sum_{n=1}^{\infty} \left\| A^{-1}B \right\|^n \left\| A^{-1} \right\| = \frac{\left\| A^{-1}B \right\|}{1 - \left\| A^{-1}B \right\|} \cdot \left\| A^{-1} \right\|.$$

4.1.12. Эквивалентность норм в конечномерных пространствах

Теорема 4.18. В конечномерном пространстве все нормы эквивалентны.

 \square Пусть X — конечномерное нормированное пространство с нормами $\|\cdot\|_1$ и $\|\cdot\|_2$. Для начала заметим, что оно изоморфно пространству \mathbb{C}^n , поэтому можно все рассуждения проводить для него. Покажем, что все нормы эквивалентны норме $\|\cdot\|$, заданной как сумма модулей всех координат вектора. Тогда про норму $\|\cdot\|_2$ можно забыть. Пусть e_1, \ldots, e_n — базис в X, тогда, полагая $C := \max \|e_i\|_1$, для всякого $x \in X$ имеем

$$||x||_1 = ||x_1e_1 + \ldots + x_ne_n||_1 \le |x_1| \cdot ||e_1||_1 + \ldots + |x_n| \cdot ||e_n||_1 \le C ||x||.$$

Тем самым оценка в одну сторону получена. Заметим, что в конечномерном пространстве единичная сфера компактна. Функция $x \mapsto \|x\|_1$ непрерывна относительно метрики, задаваемой нормой $\|\cdot\|$ в силу полученной выше оценки. На единичной сфере $\{x\colon \|x\|=1\}$ она достигает своего минимального значения, которое, очевидно, отлично от нуля. Этот минимум и есть нижняя оценка для отношения норм.

Задача 4.4. Вывести отсюда, что всякое конечномерное подпространство замкнуто.

4.1.13. Отступление про неограниченные операторы

Приведём пример неограниченного оператора с пустым спектром: пусть $A \colon D(A) \to \mathbf{C}[a,b]$, где $D(A) \subset \mathbf{C}[a,b]$ — область определения оператора. Именно, рассмотрим оператор дифференцирования $A \colon f \mapsto f'$, тогда $D(A) = \mathbf{C}^1[a,b]$, но мы будем рассматривать только функции, у которых f(a) = 0.

Выясним, когда оператор $A-\lambda$ обратим. Для этого рассмотрим задачу Коши:

$$\begin{cases} f' - \lambda f = g, \\ f(a) = 0. \end{cases}$$

Несложно видеть, что её (единственное по теореме существования и единственности из курса дифференциальных уравнений) решение выглядит так:

$$f(x) = e^{\lambda x} \int_{a}^{x} e^{-\lambda y} g(y) \, dy.$$

Таким образом, оператор $A - \lambda$ обратим при всех λ , значит, спектр оператора A пуст.

4.1.14. О ГРАФИКАХ ОПЕРАТОРОВ

Примечание: Часто встречающееся здесь обозначение (a,b) для элемента декартового произведения множеств $A \times B$, $a \in A$, $b \in B$ не следует путать с столь же часто встречающимся обозначением для скалярного произведения.

Определение. Графиком оператора $A\colon X\to Y$, где X,Y — нормированные пространства, называется множество Graph $A:=\{(x,y)\mid y=Ax\}\subset X\oplus Y$. Легко видеть, что график оператора — это линейное подпространство.

Для внешней прямой суммы пространств *норму* вводят естественным образом: $\|(x,y)\| := \|x\|_X + \|y\|_Y$. Очевидно, что прямая сумма пространств будет банаховым пространством тогда и только тогда, когда оба слагаемых банаховы.

Определение. Если график оператора замкнут, то оператор называется замкнутым.

Утверждение 4.19. Всюду определённый оператор $A \colon X \to X$ в банаховом пространстве с замкнутым графиком ограничен.

Поскольку замкнутое подмножество полного пространства полно, график оператора — это тоже полное пространство. В нашем случае Graph $A = \{(x,Ax) \mid x \in X\}$. Рассмотрим проекцию π : Graph $A \to X$ по правилу $\pi(x,Ax) = x$. Этот оператор ограничен, ибо $\|\pi(x)\| = \|x\| \leqslant \|x\| + \|Ax\|$, поэтому $\|\pi\| \leqslant 1$. Легко видеть, что π — биекция, поэтому обратное отображение π^{-1} : $x \mapsto (x,Ax)$ ограничено в силу теоремы Банаха. Но это означает, что для некоторого C > 0 имеем $\|(x,Ax)\| = \|x\| + \|Ax\| \leqslant C \cdot \|x\|$, поэтому A тоже ограничен. \blacksquare

4.2. Сопряжённые пространства и операторы

4.2.1. Определение сопряжённого оператора

Пусть X и Y — линейные нормированные пространства.

Определение. Сопряжеённым к пространству X называется пространство всех линейных ограниченных функционалов на X. Мы будем обозначать его символом X'.

Поскольку $X' = \mathscr{B}(X, \mathbb{C})$, автоматически получаем, что сопряжённое пространство всегда полно.

Пусть теперь $A: X \to Y$ — ограниченный оператор, а X' и Y' — соответствующие сопряжённые пространства. Определение. Сопряжённым к оператору A называется оператор $A': Y' \to X'$, который функционалу $g \in Y'$ ставит в соответствие функционал f по правилу f(x) := g(Ax).

Утверждение 4.20. ||A'|| = ||A||.

С одной стороны, имеем

$$||A'g|| = \sup_{||x|| \le 1} |g(Ax)| \le ||g|| \cdot ||A||,$$

таким образом, $\|A'\| \leqslant \|A\|$. Чтобы доказать обратное неравенство, рассмотрим $y = \frac{Ax}{\|Ax\|}$ и функционал $g \in Y'$ такой, что $\|g\| = 1$ и g(y) = 1. Тогда

$$||Ax|| = g(Ax) = (A'g)(x) \le ||x|| \cdot ||g|| \cdot ||A'|| = ||x|| \cdot ||A'||,$$

значит, $\frac{\|Ax\|}{\|x\|}\leqslant \|A'\|,$ откуда следует обратное неравенство.

4.2.2. Компактность оператора, сопряжённого к компактному

Пусть X — компактное подмножество метрического пространства.

Определение. Семейство Φ функций φ на X называется равномерно ограниченным, если $|\varphi(x)|\leqslant C$ для всех $x\in X$ и всех $\varphi\in\Phi$.

Определение. Семейство Φ функций φ на X называется равноственно непрерывным, если для всякого $\varepsilon>0$ найдётся $\delta>0$, для которого $|\varphi(x)-\varphi(y)|\leqslant \varepsilon$ для всех $x,y\in X$ таких, что $\rho(x,y)<\delta$ и для всех $\varphi\in\Phi$. Проще говоря, это та же равномерная непрерывность, но число δ универсально для всего семейства функций.

Теорема 4.21 (Арцела – **Асколи).** Множество $M \subset \mathbf{C}[a,b]$ предкомпактно тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

□ Изложено в [2, гл. II, § 7, п. 4].

Теорема 4.22 (Обобщённая теорема Арцела – **Асколи).** Пусть X и Y – компактные метрические пространства, и $C := \mathbf{C}(X,Y)$ – пространство непрерывных отображений из X в Y c чебышёвской метрикой. Тогда подмножество $\Phi \subset C$ предкомпактно тогда и только тогда, когда Φ равностепенно непрерывно.

□ Мы докажем только достаточность этого утверждения. Доказательство необходимости ничем не отличается от доказательства необходимости в обычной теореме Арцела, да и не потребуется нам в дальнейшем.

Пусть F — пространство всех отображений $f: X \to Y$, на котором введена метрика

$$\rho(f,g) := \sup_{x \in X} \rho(f(x), g(x)).$$

Равномерный предел непрерывных отображений на компакте непрерывен, поэтому C замкнуто в F. Следовательно, если Φ предкомпактно в F, то оно предкомпактно и в C.

Возьмём $\varepsilon > 0$ и по нему выберем δ , участвующее в определении равностепенной непрерывности. Возьмём в X $\frac{\delta}{2}$ -сеть x_1,\ldots,x_n и рассмотрим шары $B_i:=B\left(x_i,\frac{\delta}{2}\right)$. Их объединение покрывает X. Получим из этого покрытия дизъюнктное покрытие. Таким будет, например, покрытие

$$E_i := B_i \setminus \bigcup_{j < i} B_j.$$

Заметим, что diam $E_i < \delta$.

Рассмотрим в компакте Y некоторую ε -сеть y_1,\ldots,y_m . Рассмотрим набор функций $\{g\}$, которые принимают на E_i значения y_j . Такой набор, очевидно, конечен. Покажем, что они образуют 2ε -сеть для Φ в пространстве F. В самом деле, пусть $f \in \Phi$. Очевидно, для всякой точки x_i найдётся $y_{j(i)}$, для которой $\rho(f(x_i),y_j)<\varepsilon$. Возьмём в качестве g функцию со значениями $y_{j(i)}$ на множествах E_i . Тогда

$$\rho(f(x), g(x)) \leq \rho(f(x), f(x_i)) + \rho(f(x_i), g(x_i)) + \rho(g(x_i), g(x)) < 2\varepsilon,$$

что и требовалось доказать.

Теорема 4.23. Оператор, сопряжённый компактному в банаховом пространстве, компактен.

 \square Пусть $A\colon X \to Y$ — компактный оператор. Пусть $B\subset X$ — единичный шар с центром в начале координат. По определению компактного оператора, множество A(B) предкомпактно. Докажем предкомпактность множества A'(B'), где $B':=\{g\in Y'\colon \|g\|\leqslant 1\}$ — единичный шар в Y'.

Рассмотрим семейство функционалов из B' на множестве A(B). Пусть $g \in B'$, а $y = Ax \in A(B)$, тогда

$$|g(y)| \le ||g|| \cdot ||y|| = ||g|| \cdot ||Ax|| \le ||g|| \cdot ||A|| \cdot ||x|| \le ||A||$$
.

30 4.3.1. Вспомогательные леммы

Следовательно, функционалы из B' равномерно ограничены на A(B).

Пусть теперь $y_1, y_2 \in A(B)$, а $g \in B'$. Тогда

$$|g(y_1) - g(y_2)| = |g(y_1 - y_2)| \le ||g|| \cdot ||y_1 - y_2|| \le ||y_1 - y_2||,$$

а это означает равностепенную непрерывность семейства B' на A(B). В силу обобщения теоремы Арцела множество B' предкомпактно в смысле равномерной сходимости на A(B).

Теперь рассматриваем произвольную последовательность $\{A'g_n\}\subset A'(B')$. Поскольку множество B' предкомпактно в смысле равномерной сходимости, из последовательности $\{g_n\}$ можно выделить фундаментальную относительно равномерной сходимости на A(B) подпоследовательность. Иначе говоря,

$$\sup_{y \in A(B)} \left| g_{n_i}(y) - g_{n_j}(y) \right| = \sup_{x \in B} \left| g_{n_i}(Ax) - g_{n_j}(Ax) \right| \to 0, \quad n_i, n_j \to \infty.$$

Но

$$\sup_{x \in B} |g_{n_i}(Ax) - g_{n_j}(Ax)| = \sup_{x \in B} |A'(g_{n_i} - g_{n_j})(x)| = ||A'g_{n_i} - A'g_{n_j}||.$$

А это означает, что последовательность $\{A'g_{n_k}\}$ фундаментальна в X' и тем самым компактность доказана.

4.3. Теория Фредгольма в банаховых пространствах

4.3.1. Вспомогательные леммы

Лемма 4.24. Пусть A- компактный оператор. Тогда $K:=\mathrm{Ker}(A-I)$ конечномерно.

Пусть $M \subset K$ — произвольное ограниченное множество. Тогда для $\forall x \in M$ имеем (A-I)x = 0, то есть Ax = x. Значит, A(M) = M, но по определению компактного оператора, множество A(M) предкомпактно. Таким образом, каждое ограниченное подмножество в ядре предкомпактно, поэтому по лемме 4.8 K конечномерно.

Замечание. В этой лемме вместо оператора A-I можно с тем же успехом рассмотреть оператор $A-\lambda I$, если $\lambda \neq 0$. Тогда мы получим, что компактный оператор может иметь лишь конечное число собственных векторов с данным ненулевым собственным значением.

Лемма 4.25. Пусть A- компактный оператор. Тогда ${\rm Im}(A-I)$ замкнут.

Вначале покажем, что существует $\alpha>0$, зависящее только от оператора A, такое, что если Ax-x=y разрешимо, то существует решение x, для которого выполнено неравенство $\|x\|\leqslant \alpha\,\|y\|$. Пусть x_0 — какое-нибудь решение этого уравнения. Тогда общее решение имеет вид x_0+z , где $z\in K:=\mathrm{Ker}(A-I)$. Рассмотрим функцию $\varphi\colon K\to\mathbb{R}_+$, заданную по правилу

$$\varphi(z) := \|x_0 + z\|.$$

Положим $d:=\inf_{z\in K}\varphi(z)$, и пусть $\{z_n\}$ — минимизирующая последовательность, то есть $\varphi(z_n)\to d$.

Последовательность $\{\varphi(z_n)\}$ сходится, поэтому она ограничена. Следовательно, ограничена и последовательность $\{\|z_n\|\}$, так как

$$||z_n|| \le ||x_0 + z_n|| + ||x_0|| = \varphi(z_n) + ||x_0||.$$

В силу леммы 4.24 подпространство K конечномерно, поэтому из неё можно выделить сходящуюся. Выкинем из неё лишнее и перенумеруем, тогда можно считать, что $z_n \to z_0$. В силу замкнутости ядра, $z_0 \in K$. Тогда в силу непрерывности $\varphi(z_n) \to \varphi(z_0)$, и $\varphi(z_0) = d$. Значит, решение $x_0 + z_0$ обладает наименьшей нормой.

Теперь докажем существование α . Через $\widetilde{x}(y)$ будем обозначать решение с минимальной нормой, соответствующее правой части y. Рассмотрим отношение $\frac{\|\widetilde{x}(y)\|}{\|y\|}$ и допустим, что оно не ограничено, тогда найдётся последовательность $\{y_n\}$, для которой

$$\frac{\|\widetilde{x}(y_n)\|}{\|y_n\|} \to \infty.$$

Для краткости положим $\tilde{x}_n := \tilde{x}(y_n)$. В силу линейности, правой части μy_n соответствует минимальное по норме решение $\mu \tilde{x}_n$, поэтому можно считать, что $\|\tilde{x}_n\| = 1$. Тогда $\|y_n\| \to 0$. В силу компактности A и ограниченности последовательности $\{\tilde{x}_n\}$, последовательность $\{A\tilde{x}_n\}$ содержит сходящуюся подпоследовательность. Снова выкинем лишнее, тогда можно считать, что $A\tilde{x}_n \to \tilde{x}_0$, но так как $A\tilde{x}_n - \tilde{x}_n = y_n$, а правая часть по предположению стремится к нулю, то $A\tilde{x}_n - \tilde{x}_n \to 0$, откуда $\tilde{x}_n \to \tilde{x}_0$. Значит, $A\tilde{x}_n \to A\tilde{x}_0$, и $A\tilde{x}_0 = \tilde{x}_0$. Это означает, что $\tilde{x}_0 \in K$, но в силу минимальности нормы решения \tilde{x}_n имеем $\|\tilde{x}_n - x_0\| \geqslant \|\tilde{x}_n\| = 1$, а это противоречит сходимости $\tilde{x}_n \to \tilde{x}_0$.

сходимости $\widetilde{x}_n \to \widetilde{x}_0$. Итак, отношение $\frac{\|\widetilde{x}(y)\|}{\|y\|}$ ограничено, и осталось положить

$$\alpha := \sup \frac{\|\widetilde{x}(y)\|}{\|y\|}.$$

Теперь докажем замкнутость образа. Пусть $y_n \in \text{Im}(A-I)$ и $y_n \to y_0$. Без ограничения общности можно считать, что $||y_{n+1} - y_n|| \leq \frac{1}{2^n}$. Запишем тождество

$$y_1 - y_1 + y_2 - y_2 + y_3 - y_3 + \dots - y_n + y_{n+1} = y_{n+1} \to y_0.$$

Пусть x_i — прообразы векторов, выделенных скобками, при отображении (A-I), то есть $(A-I)x_1=y_1$, $(A-I)x_2=-y_1+y_2$, и так далее. Такие, конечно, найдутся, поскольку образ — линейное подпространство, а y_i в нём лежат. Но мы специально будем выбирать только такие решения x_i , для которых имеет место свойство

$$||x_{n+1}|| \leqslant \alpha ||y_{n+1} - y_n|| \leqslant \frac{\alpha}{2^n}.$$

Значит, ряд $\sum x_i$ сходится. Образ суммы этого ряда накроет y_0 в силу непрерывности.

4.3.2. Теоремы Фредгольма

Пусть X — банахово пространство, $A \colon X \to X$ — компактный оператор. Рассмотрим уравнения

$$\begin{cases} Ax - x = y, \\ Ax - x = 0; \end{cases} \begin{cases} A'f - f = g, \\ A'f - f = 0. \end{cases}$$

Теорема 4.26 (Третья теорема Фредгольма для A**).** Уравнение Ax - x = y разрешимо тогда и только тогда, когда f(y) = 0 для $\forall f \in \text{Ker}(A' - I)$.

 \square Пусть уравнение разрешимо. Рассмотрим $f \in \operatorname{Ker}(A'-I)$. Тогда

$$f(y) = f(Ax - x) = (A'f)(x) - f(x) = (A'f - f)(x) = ((A' - I)f)(x) = 0,$$

что и требовалось.

Докажем теперь обратное утверждение теоремы. Пусть для всякого $f \in \text{Ker}(A'-I)$ имеем f(y)=0. Нам надо доказать утверждение $A \Rightarrow B$, а мы будем доказывать равносильное ему $\overline{B} \Rightarrow \overline{A}$, то есть если для вектора y решения нет, то найдётся функционал из ядра, который не обнуляется на этом векторе.

Пусть уравнение Ax-x=y не решается, то есть $y\notin {\rm Im}(A-I)$. Возьмём ограниченный функционал f такой, что f(y)=1, а $f({\rm Im}(A-I))=0$. Это можно сделать в силу леммы 4.7, поскольку ${\rm Im}(A-I)$ замкнут в силу леммы 4.25. Далее, для всякого вектора x имеем 0=f(Ax-x)=(A'f-f)(x), значит, A'f-f=0. Таким образом, $f\in {\rm Ker}(A'-I)$, но для него не выполнено условие f(y)=0, и теорема доказана.

Следствие 4.2. *Если* Ker(A'-I) = 0, то уравнение Ax - x = y разрешимо для всех у.

 \square В самом деле, если в ядре $\mathrm{Ker}(A'-I)$ лежит только нулевой функционал, то, очевидно, для всякого вектора y выполнено свойство f(y)=0 для $\forall f\in \mathrm{Ker}(A'-I)$, ибо $0(y)\equiv 0$. Осталось воспользоваться только что доказанной третьей теоремой Фредгольма (справа налево).

Теорема 4.27 (Третья теорема Фредгольма для A'). Уравнение A'f - f = g разрешимо тогда и только тогда, когда g(x) = 0 для $\forall x \in \text{Ker}(A - I)$.

 \square Пусть уравнение A'f-f=g разрешимо. Пусть $x\in \mathrm{Ker}(A-I)$. Имеем

$$g(x) = (A'f - f)(x) = (A'f)(x) - f(x) = f(Ax - x) = f(0) = 0,$$

что и требовалось доказать.

Обратно, если функционал f есть решение, то (A'f)(x) - f(x) = g(x), то есть f(Ax - x) = g(x). Поэтому будем конструировать его, исходя из этого равенства. Зададим функционал f_0 на Im(A - I) так:

$$f_0(Ax - x) := g(x).$$

Проверим, что это корректно, то есть покажем, что значение функционала не зависит от выбора прообраза x для элемента Ax-x. Пусть $Ax_1-x_1=Ax_2-x_2$, нужно проверить, что $g(x_1)=g(x_2)$. В самом деле, имеем $(A-I)(x_1-x_2)=0$, то есть $x_1-x_2\in \mathrm{Ker}(A-I)$. По условию теоремы, на векторах из этого ядра функционал g равен нулю, поэтому $g(x_1-x_2)=0$, то есть $g(x_1)=g(x_2)$.

Теперь покажем, что так определённый функционал f_0 ограничен. Как было установлено в лемме 4.25, по крайней мере для одного из прообразов x вектора y (то есть Ax - x = y) имеет место неравенство $||x|| \le \alpha ||y||$. Тогда

$$|f_0(y)| = |f_0(Ax - x)| = |g(x)| \le ||g|| \cdot ||x|| \le \alpha ||g|| \cdot ||y||.$$

Тем самым проверена ограниченность f_0 . Остаётся продолжить его по теореме Хана – Банаха на всё пространство и обозначить это продолжение через f. Тогда для всякого x имеем

$$f(Ax - x) = f(y) = f_0(y) = g(x),$$

то есть

$$(A'f - f)(x) = g(x),$$

но это и означает, что f есть решение исходного уравнения.

Следствие 4.3. Если Ker(A - I) = 0, то уравнение A'f - f = g разрешимо для всех g.

Теорема 4.28 (Первая теорема Фредгольма). Уравнение Ax - x = y разрешимо для любого y тогда u только тогда, когда Ker(A - I) = 0.

Будем доказывать от противного: пусть ядро $\operatorname{Ker}(A-I)=:X_0$ нетривиально, тогда найдётся $x_0\neq 0$, для которого $Ax_0-x_0=0$. Рассмотрим уравнение $Ax-x=x_0$. По условию у него есть решение x_1 , то есть $Ax_1-x_1=x_0$. Аналогично, у уравнения $Ax-x=x_1$ есть решение x_2 , и так далее. Итак, $Ax_i-x_i=x_{i-1}$. Рассмотрим возрастающую цепочку подпространств $X_n:=\operatorname{Ker}(A-I)^{n+1}$. Покажем, что они строго возрастают. В самом деле, по построению имеем $(A-I)^ix_i=x_0$, а $(A-I)x_0=0$, поэтому $(A-I)^{i+1}x_i=(A-I)x_0=0$. Таким образом, вектор x_i аннулируется (i+1)-й степенью оператора (A-I), но не аннулируется его i-й степенью. Значит, ядра не совпадают. Поскольку подпространства X_n замкнуты (это ядра непрерывных операторов), то найдётся последовательность единичных векторов $\{y_n\}$, для которых $\rho(y_n,X_{n-1})\geqslant \frac{1}{2}$. Покажем, что их образы образуют ежа. Пусть m>n, тогда

$$||Ay_m - Ay_n|| = ||y_m + Ay_m - y_m - Ay_n + y_n - y_n|| = ||y_m + (A - I)y_m - (A - I)y_n - y_n||.$$

Все слагаемые, кроме первого, погибнут при применении оператора $(A-I)^m$, следовательно, их сумма представляет собой некоторый вектор из X_{m-1} . Поэтому $\|Ay_m - Ay_n\| \geqslant \frac{1}{2}$. Значит, образы векторов являются ежом, что противоречит компактности оператора.

Симметричное утверждение для сопряжённых операторов доказывается аналогично.

Обратно, пусть Ker(A-I)=0. По следствию из третьей теоремы Фредгольма для сопряжённого оператора, в этом случае уравнение A'f-f=g всегда разрешимо. Пользуясь уже доказанным для сопряжённого оператора, получаем Ker(A'-I)=0. Далее, применяя следствие из третьей теоремы Фредгольма для обычных операторов, получаем, что уравнение Ax-x=y разрешимо для любого y.

Определение. Пусть V — (конечномерное) векторное пространство с базисом e_1, \ldots, e_n , а V^* — сопряжённое ему пространство. Базис $\varepsilon^1, \ldots, \varepsilon^n$ пространства V^* называется *сопряжённым* к e_1, \ldots, e_n , если $\varepsilon^j(e_i) = \delta_i^j$.

Теорема 4.29 (Вторая теорема Фредгольма). $\dim \operatorname{Ker}(A-I) = \dim \operatorname{Ker}(A'-I)$.

Пусть x_1, \ldots, x_n — базис в $\operatorname{Ker}(A-I)$, а f_1, \ldots, f_m — базис в $\operatorname{Ker}(A'-I)$. Возьмём сопряжённый базис $\varphi_1, \ldots, \varphi_n$ к x_1, \ldots, x_n , и ξ_1, \ldots, ξ_m — сопряжённый базис к f_1, \ldots, f_m . Допустим, что $n \neq m$ и рассмотрим два случая.

 $\mathbf{1}^{\circ}$ Пусть n < m. Рассмотрим оператор

$$Ux = Ax + \sum_{i=1}^{n} \varphi_i(x)\xi_i.$$

Этот оператор компактен, поскольку это сумма компактного и конечномерного операторов.

Покажем, что Ker(U-I) = 0. В самом деле, пусть Ux - x = 0. Распишем выражение для оператора U:

$$Ax + \sum_{i=1}^{n} \varphi_i(x)\xi_i = x,$$

$$Ax - x + \sum_{i=1}^{n} \varphi_i(x)\xi_i = 0.$$

Подействуем на это выражение функционалами f_i , получим

$$f_j(Ax - x) + \sum_{i=1}^n \varphi_i(x) f_j(\xi_i) = 0, \quad j = 1, \dots, m,$$

или, что то же самое,

$$(A'f_j - f_j)(x) + \sum_{i=1}^n \varphi_i(x)f_j(\xi_i) = 0, \quad j = 1, \dots, m.$$

Но поскольку f_j лежат в ядре, то первое слагаемое равно нулю. При каждом значении j в сумме выживает только слагаемое с номером j в силу сопряжённости базисов. Следовательно, $\varphi_i(x)=0$ при всех i, поэтому Ux=Ax, откуда Ax-x=0, следовательно, $x\in \mathrm{Ker}(A-I)$. Но так как φ_i образуют базис пространства, сопряжённого этому ядру, и все обнуляются на векторе x, то x может быть только нулём, что и требовалось локазать.

Применим следствие третьей теоремы Фредгольма: если $\mathrm{Ker}(U-I)=0$, то уравнение Ux-x=y разрешимо при любой правой части, в частности, при $y=\xi_{n+1}$. Пусть x — решение этого уравнения. Тогда

$$1 = f_{n+1}(\xi_{n+1}) = f_{n+1}(Ux - x) = f_{n+1}\left(Ax - x + \sum_{i=1}^{n} \varphi_i(x)\xi_i\right) =$$

$$= f_{n+1}(Ax - x) + \sum_{i=1}^{n} \varphi_i(x)f_{n+1}(\xi_i) \stackrel{!}{=} (A'f_{n+1} - f_{n+1})(x) + 0 = ((A' - I)f_{n+1})(x) \stackrel{!!}{=} 0(x) = 0.$$

Здесь переход «!» следует из того, что i < n+1 (а потому всё убивает сопряжённость базисов), а переход «!!» — из того, что f_{n+1} лежит в ядре $\operatorname{Ker}(A'-I)$. Но так как $1 \neq 0$, мы получаем противоречие, значит, случай n < m невозможен.

 $\mathbf{2}^{\circ}$ Теперь допустим, что m < n. Рассмотрим оператор

$$U'f = A'f + \sum_{i=1}^{m} f(\xi_i)\varphi_i.$$

Покажем, что Ker(U'-I)=0. В самом деле, пусть U'f-f=0. Распишем выражение для оператора U':

$$A'f + \sum_{i=1}^{m} f(\xi_i)\varphi_i = f,$$

$$A'f - f + \sum_{i=1}^{m} f(\xi_i)\varphi_i = 0.$$

Подействуем этим выражением на векторы x_i , получим

$$(A'f - f)(x_j) + \sum_{i=1}^{m} f(\xi_i)\varphi_i(x_j) = 0, \quad j = 1, \dots, n,$$

или, что то же самое,

$$f(Ax_j - x_j) + \sum_{i=1}^{m} f(\xi_i)\varphi_i(x_j) = 0, \quad j = 1, \dots, n.$$

Но поскольку x_j лежат в ядре, то первое слагаемое равно нулю. При каждом значении j в сумме выживает только слагаемое с номером j в силу сопряжённости базисов. Следовательно, $f(\xi_i)=0$ при всех i, поэтому U'f=A'f, откуда A'f-f=0, следовательно, $f\in \mathrm{Ker}(A'-I)$. Но так как ξ_i образуют базис пространства, сопряжённого этому ядру (здесь мы неявно пользуемся тем, что для конечномерных пространств имеет место канонический изоморфизм $V^{**}\cong V$), и ковектор f на них равен нулю, то f может быть только нулём, что и требовалось доказать.

Применим следствие третьей теоремы Фредгольма: если $\mathrm{Ker}(U'-I)=0$, то уравнение U'f-f=g разрешимо при любой правой части, в частности, при $g=\varphi_{m+1}$. Пусть f — решение этого уравнения. Тогда

$$1 = \varphi_{m+1}(x_{m+1}) = (U'f - f)(x_{m+1}) = \left(A'f - f + \sum_{i=1}^{m} f(\xi_i)\varphi_i\right)(x_{m+1}) =$$

$$= (A'f - f)(x_{m+1}) + \sum_{i=1}^{m} f(\xi_i)\varphi_i(x_{m+1}) \stackrel{!}{=} f(Ax_{m+1} - x_{m+1}) + 0 = f((A - I)x) \stackrel{!!}{=} f(0) = 0.$$

Здесь переход «!» следует из того, что i < n+1 (а потому всё убивает сопряжённость базисов), а переход «!!» — из того, что x_{m+1} лежит в ядре $\operatorname{Ker}(A-I)$. Но так как $1 \neq 0$, мы получаем противоречие, значит, случай m < n тоже невозможен.

Итак, остаётся единственная возможность m=n, но это и требовалось доказать.

4.3.3. Альтернатива Фредгольма

Теорема 4.30 (Альтернатива Фредгольма). Рассмотрим уравнение (A - I)x = y. Тогда либо ядро Ker(A - I) ненулевое, либо оператор A - I обратим.

 \square Пусть ядро нулевое, тогда в силу первой теоремы Фредгольма, уравнение (A-I)x=y разрешимо для любого y, то есть $\mathrm{Im}(A-I)=X$. Кроме того, оператор A-I инъективен. Следовательно, это биекция $X \leftrightarrow X$. По теореме Банаха оператор A-I будет иметь ограниченный обратный. \blacksquare

Следствие 4.4. Ненулевые точки спектра компактного оператора суть его собственные значения конечной кратности.

 \square В самом деле, при $\lambda \neq 0$ можно применить альтернативу Фредгольма: если $\ker(A-\lambda I)=0$, то оператор $A-\lambda I$ обратим, поэтому такие λ не принадлежат спектру. Если же ядро ненулевое, то его размерность конечна, как было доказано выше.

Замечание. Первая теорема Фредгольма допускает слегка парадоксальную переформулировку: «Если решение единственно, то оно существует».

4.3.4. Частный случай: гильбертовы пространства

Строго говоря, сопряжённое пространство H^* к гильбертову пространству H не изоморфно исходному пространству. Между H и H^* имеется так называемый *антиизоморфизм*. Задаётся он очевидным образом: Пусть $h \in H$. Сопоставим этому вектору некоторый функционал:

$$h \stackrel{\varphi}{\longmapsto} f_h(x) := (x, h).$$

Это корректно, так как все функционалы имеют такой вид, то есть отображение сюръективно, а инъективность сомнений не вызывает. Но скалярное произведение в пространстве над полем $\mathbb C$ антилинейно по второму аргументу, поэтому и φ будет антилинейным:

$$\varphi(\lambda h) = f_{\lambda h} = (x, \lambda h) = \overline{\lambda}(x, h) = \overline{\lambda}\varphi(h).$$

Такие отображения и называют антиизоморфизмами.

А вот если пространство над полем \mathbb{R} , то всё совсем хорошо и $H\cong H^*$.

Тогда теоремы Фредгольма переформулируются так:

$$\operatorname{Ker}(A-I) = 0 \Leftrightarrow \operatorname{Im}(A-I) = H;$$
 (3)

$$\dim \operatorname{Ker}(A - I) = \dim \operatorname{Ker}(A^* - I); \tag{4}$$

$$\operatorname{Ker}(A^* - I) = \operatorname{Im}(A - I)^{\perp}. \tag{5}$$

5. Приложение

5.1. Service Pack 1 (Миша Берштейн, Миша Левин)

Здесь под сохраняющимся спектром понимаются либо собственные значения бесконечномерной кратности, либо те значения λ , при которых будет незамкнутым образ (при этом вполне может быть конечномерное ядро).

Лемма 5.1. Следующие два утверждения эквивалентны:

- 1. Выполняется хотя бы одно из двух условий: $\dim {
 m Ker}(A-\lambda I)=\infty\,$ или ${
 m Im}(A-\lambda I)\,$ незамкнут;
- 2. \exists непредкомпактная последовательность $\{x_n\}$, такая, что $||x_n|| = 1$ и $(A \lambda I)x_n \to 0$. Предполагается, что исходное пространство банахово.
- \square В процессе доказательства леммы о замкнутости образа оператора A-I, если A компактен был установлен следующий факт: если ядро оператора A-I конечномерно (не обязательно компактного), то $\forall y \in \text{Im}(A-I) \exists \widetilde{x}$, являющееся наименьшем по норме решением уравнения (A-I)x = y. Понятно, что это верно и для оператора $A-\lambda I$, $\forall \lambda$.

Пусть есть оператор B, dim Ker $B < \infty$, тогда профакторизуем все пространство по Ker B и введем в этом новом пространстве норму: $||x||_1 = ||\widetilde{x}||$, где \widetilde{x} — наименьшее решение уравнения Bz = y, где y = Bx.

Докажем корректность определения. Если x_1 и x_2 лежат в одном классе эквивалентности, то $Bx_1 = Bx_2$ и, соответственно, \widetilde{x} для них одинаково.

 $\|x\|_1 = 0 \Leftrightarrow x \in \operatorname{Ker} B$, значит, его образ при факторизации равен 0 — первое свойство нормы. $\|\lambda x\|_1 = \lambda \|x\|_1$ — очевидно.

 $\|x+y\|_1 = \left\|\widetilde{x+y}\right\| \leqslant \|\widetilde{x}+\widetilde{y}\| \leqslant \left\{ \text{ так как } B(\widetilde{x+y}) = B\widetilde{x} + B\widetilde{y}, \text{ а } \widetilde{x+y} - \text{наименьшее решение } \right\} \leqslant \|\widetilde{x}\| + \|\widetilde{y}\| = \|x\|_1 + \|y\|_1.$

Значит, это действительно будет нормой.

Будем доказывать, что $1 \Rightarrow 2$.

- 1. $\dim \operatorname{Ker}(A \lambda I) = \infty$ этот случай был разобран ранее.
- 2. dim Ker $(A \lambda I) < \infty$ и Im $(A \lambda I)$ незамкнут.

Профакторизуем по $\operatorname{Ker}(A-\lambda I)$ и введем норму, как это было указано выше. Мы получим оператор $B-\lambda I$, индуцированный оператором $A-\lambda I$ на факторизованном пространстве, причем $\operatorname{Ker}(B-\lambda I)=0$, а $\operatorname{Im}(B-\lambda I)$ не замкнут. Такой случай также разбирался и, значит, для оператора $B-\lambda I$ \exists искомая $\{x_n\}$. Тогда в качестве последовательности для $A-\lambda I$ возьмем $\{\widetilde{x_n}\}$. Докажем, что она подходит. Имеем $\|\widetilde{x_n}\|=\|x_n\|_1=1$ и $(A-\lambda I)\widetilde{x_n}=(B-\lambda I)x_n\to 0$.

Осталось доказать непредкомпактность $\{\widetilde{x_n}\}$. Предположим противное. Тогда найдётся фундаментальная подпоследовательность $\{\widetilde{x_{n_k}}\}$. Тогда для $\forall \, \varepsilon > 0$ найдётся N такое, что для $\forall \, k, l > N$ выполнено $\|\widetilde{x_{n_k}} - \widetilde{x_{n_l}}\| < \varepsilon$. Но для $\forall \, k, l$ имеем

$$\|\widetilde{x_{n_k}} - \widetilde{x_{n_l}}\| \ge \|\widetilde{x_{n_k}} - x_{n_l}\| = \|x_{n_k} - x_{n_l}\|.$$

Значит $\{x_{n_k}\}$ также фундаментальна. Противоречие.

Теперь докажем, что $2 \Rightarrow 1$.

Если ${\rm Im}(A-\lambda I)$ незамкнут, то все доказано. Пусть тогда он замкнут. Если ${\rm dim}\,{\rm Ker}(A-\lambda I)=\infty$, то все доказано. Предположим противное. Отфакторизуем по ${\rm Ker}(A-\lambda I)$. Тогда пусть t_n — образ x_n при факторизации. Докажем, что $\exists\,c>0:\,\forall\,n\,\,\|t_n\|_1>c$. Предположим противное. Тогда найдётся подпоследовательность $\{t_{n_k}\}$ такая, что $\|t_{n_k}\|_1\to 0$. Тогда $\|\widehat{x_{n_k}}\|\to 0$. Обозначим $z_k=x_{n_k}-\widehat{x_{n_k}}$. Тогда $\|z_k\|=\|x_{n_k}-\widehat{x_{n_k}}\|\leqslant \|x_{n_k}\|+\|\widehat{x_{n_k}}\|\leqslant 2\|x_{n_k}\|=2$. Очевидно, $z_k\in{\rm Ker}(A-\lambda I)$. Тогда мы получаем ограниченную последовательность в конечномерном пространстве. Тогда она предкомпактна. После перенумерации можно считать, что $\{z_k\}$ сходится. Но тогда $\{x_{n_k}\}$ сходится как сумма сходящихся последовательностей $\{z_k\}$ и $\{\widehat{x_{n_k}}\}$ — противоречие с тем, что $\{x_n\}$ непредкомпактна. Обозначим X - отфакторизованное пространство. Обозначим $Y={\rm Im}(A-\lambda I)$. Так как Y — замкнутое подпространство банахова пространства, то Y — банахово.

Лемма 5.2. Пространство X банахово.

 \square Пусть $\{x_n\}$ — фундаментальная последовательность в X. Пусть $\forall i,j>N_1 \ \|x_i-x_j\|_1<\frac{1}{2}$. Пусть $y_1=x_{N_1}$. Пусть $\forall i,j>N_2>N_1$. $\forall i,j>N_2 \ \|x_i-x_j\|_1<\frac{1}{4}$ и $y_2=x_{N_2}$ и т.д. Тогда $\forall n \ \forall i,j>n \ \|y_i-y_j\|_1<\frac{1}{2^n}$. Возьмем $z_1=\widetilde{y_1},\ z_n=z_{n-1}+(y_n-y_{n-1})$. Тогда z_n является прообразом для y_n при отображении факторизации. $\|z_{n+1}-z_n\|=\|y_{n+1}-y_n\|=\|y_{n+1}-y_n\|_1$. Тогда $\forall n \ \forall i>j\geqslant n$ имеем

$$||z_i - z_j|| \le ||z_i - z_{i-1}|| + \dots + ||z_{j+1} - z_j|| < \frac{1}{2^{i-1}} + \dots + \frac{1}{2^j} < \frac{1}{2^{n-1}},$$

т.е. $\{z_n\}$ — фундаментальна. Тогда $z_n \to z$. Пусть y — образ z при факторизации. Тогда $y_n \to y$. Тогда $\{x_n\}$ — фундаментальная последовательность, подпоследовательность которой сходится к y. Значит, $x_n \to y$.

Обозначим B — оператор, индуцированный $A - \lambda I$ на X. Тогда $B: X \to Y$, $\ker B = 0$, X и Y — банаховы. B ограничен, так как $\|Bx\| = \|(A - \lambda I)\widetilde{x}\| \le \|A - \lambda I\| \|\widetilde{x}\| = \|A - \lambda I\| \|x\|_1$. Тогда по теореме Банаха существует ограниченный $C = B^{-1}$. Обозначим $w_n = Bt_n$. Тогда $t_n = Cw_n$. Но $w_n \to 0$, а $\exists c : \forall n \ \|t_n\|_1 > c$. Противоречие с ограниченностью C.

5.2. Service Pack 2 (Юра Малыхин)

5.2.1. ТЕОРЕМА ХАНА – БАНАХА

Первый случай, когда пространство сепарабельно, т.е. $\exists (x_n) \subset H$ плотное. Продолжаем F на $\langle X_0, x_1, \ldots, x_n \rangle$ последовательно. Получим в итоге F на $\langle X, x_i \rangle$ — это плотное подмножество. Продолжим F по непрерывности: надо проверить корректность и что норма не испортится. Корректность: пусть $a_i, b_i \to c$. Мы хотим положить $F(c) := \lim F(a_i)$. Т.к a_i фундаментальна, то и $F(a_i)$ тоже, поэтому предел существует; т.к $\|a_i - b_i\| \to 0$, то $|F(a_i) - F(b_i)| \leqslant \|F_0\| \cdot \|a_i - b_i\| \to 0$, т.е. пределы равны. Далее,

$$||a_i|| \to ||c||, \quad |F(a_i)| \le ||F_0|| \cdot ||a_i||, \quad |F(a_i)| \to |F(c)|.$$

Отсюда $|F(c)| \leqslant ||F_0|| \cdot ||c||$.

5.2.2. Спектральная теорема

Более подробно про построение U: сначала определяем U на всюду плотном множестве $\langle A^n h \rangle$ так: если v = P(A)h, то Uv = P. Корректность проверена (по определению меры σ). Изометрия проверена — это ровно

36 5.2.3. Теорема Ф. Рисса

то же тождество, только без равенства нулю. Значит, все продолжается на $C[-\|A\|,\|A\|]$, причем остается свойство изометричности. Отсюда следует инъективность U. Проверим сюръективность: берем $f \in L_2(\sigma)$ и строим многочлены $P_n \to f$ (сходимость по норме L_2 - существование такой последовательности многочленов см. ниже - лемма). Берем $x_n = P_n(A)h$ - прообразы. В силу изометрии последовательность x_n фундаментальна и имеет предел x. Тогда Ux = f. Теперь нам надо доказать следующее равенство функций: $(UAU^{-1}f)(\lambda) = \lambda f(\lambda)$. Если теперь $P_n \to f$, то:

$$\lambda f(\lambda) \stackrel{1}{\leftarrow} \lambda P_n(\lambda) \stackrel{2}{=} UAU^{-1}P_n \stackrel{3}{\longrightarrow} UAU^{-1}f.$$

1 означает сходимость по норме L_2 , эта сходимость следует из того, что $\|\lambda P_n(\lambda) - \lambda f(\lambda)\|_2 \leqslant C \|P_n - f\|_2$, где $|\lambda| \leqslant C$.

2 следует из определения U

3 означает сходимость по норме L_2 , она следует из непрерывности операторов U, U^{-1}, A .

Поскольку предел в L_2 единствен, левая часть равна правой.

Лемма 5.3. Пусть σ — конечная борелевская мера на [a,b] $(m. e. она задана на борелевских подмножествах отрезка). Тогда многочлены плотны в <math>L_2(\sigma)$.

□ Нам надо приблизить многочленами все функции из L_2 . Поскольку все непрерывные приближаются многочленами равномерно, то приближаются и по норме L_2 . Поскольку простые функции плотны в L_2 , остается лишь приблизить непрерывными функциями индикаторы измеримых (=борелевских) множеств. Теперь рассмотрим те E, индикаторы которых приближаются непрерывными функциями, т.е. $F = \{E: \chi_E \in \overline{C[a,b]}\}$. Покажем, что F есть σ -алгебра. Действительно, если f_n приближают χ_E , то $1-f_n$ приближают $\chi_{[a,b]\setminus E}$, если $f_n \to E_1$, $g_n \to E_2$, то $f_n g_n \to \chi_{E_1\cap E_2}$, если есть счетное число непересекающихся E_i , то берем $f_1: \|f_1-\chi_{E_1}\|<\frac{1}{2}$, $f_2: \|f_2-\chi_{E_2}\|<\frac{1}{4}$, и так далее. Тогда $\|\sum f_i-\chi_{E_1\sqcup E_2\sqcup ...}\|<1$. Покажем, что в F входят полуинтервалы вида [a,t). Такой интервал приближается функцией $f_n(x)$, которая есть 0 при $x\geqslant t$, 1 при $x\leqslant t-\frac{1}{n}$, концы соединяем по линейности. Действительно, тогда ошибка есть $\int_{[t-1/n,t)} |1-f_n|^2\leqslant \sigma([t-1/n,t))\to 0$. Значит F содержит все борелевские множества, чего нам и надо было доказать. \blacksquare

5.2.3. ТЕОРЕМА Ф. РИССА

Утверждение 5.4. Пусть для любой вещественнозначной f имеем $F(f) \in \mathbb{R}$. Покажем, что построенную функцию q можно выбрать окажется вещественной.

Пусть для любой вещественнозначной неотрицательной f имеем $F(f) \geqslant 0$. Покажем, что g можно выбрать вещественной неубывающей.

- Заметим, что мы используем теорему Рисса в несколько другой форме, а именно, пользуемся не самой функцией g, а мерой dg. Поэтому после того, как построили функцию конечной вариации g, изменим ее в счетном числе точек, чтобы представить в виде разности $g'=g'_1-g'_2$ функций распределения некоторых мер μ_2, μ_1 на [a,b]. Это делаем так: известно, что g есть разность $g=g_1-g_2$ двух монотонных функций. Далее переопределим, если надо, g_1 и g_2 так, чтобы они стали непрерывны слева на (a,b). С точкой b происходит жопа. Тогда dg'_1 и dg'_2 некоторые меры, поэтому интеграл по dg есть разность интегралов Лебега по мерам dg'_1 и dg'_2 , а с интегралом Лебега работать намного приятнее! Техническое утверждение $[2, \, \text{гл. } 6, \, \S \, 6, \, \text{п. } 4]$ состоит в том, что для всякой непрерывной функции f значение интеграла не изменится, т.е. $\int f dg = \int f dg' = \int f dg'_2 \int f dg'_1$, где первые два интеграла понимаются в смысле Римана Стилтьеса, а последние два в смысле Лебега Стилтьеса. Далее везде считаю функцию g подправленной. (Замечу, что рассуждения в этом параграфе необходимо проводить, чтобы получить именно меру в спектральной теореме!)
- 1) итак, пусть F вещественный. Сделаем $g(c) \in \mathbb{R}$ для какой-то фиксированной $c \in (a,b)$. Возьмем произвольное d > c и докажем $g(d) \in \mathbb{R}$. Для этого построим последовательность «почти индикаторов» f_n , сходящихся почти всюду к $\psi = \chi_{[c,d)}$. Тогда $\int f_n dg_2 \longrightarrow \int \psi dg_2$ (из свойств интеграла Лебега), $\int f_n dg_1 \longrightarrow \int \psi dg_2$, откуда $\int f_n dg \longrightarrow \int \psi dg = g(d) g(c)$. Поскольку слева стоят вещественные числа, то и предел получится вещественным. Аналогично доказывается $g(d) \in \mathbb{R}$ для d < c и для g(b). (Тут я сжульничал! На самом деле проблема имеется в точке b, по хорошему g_1 и g_2 должны быть непрерывны в точке b слева, но тогда нужно знать еще меру точки b, т. е. g(b+0)-g(b). Подробности слишком техничны и неинтересны)
- 2) Пусть F неотрицателен. Совершенно аналогично доказывается, что g монотонна. Выбирая g вещественной в какой-нибудь точке, получим вещественную монотонную функцию, которая будет функцией распределения некоторой меры (опять возникает небольшая проблема с мерой b). Эту меру и надо будет использовать в спектральной теореме. \blacksquare

5.2.4. Теорема о компактном возмущении

Контрпример, показывающий неравносильность определений непрерывного спектра: рассмотрим $A\colon \ell_2 \to \ell_2, \ (x_1, x_2, \ldots) \mapsto (x_1, x_2/2, x_3/3, \ldots)$. Он компактен, причем $0 \in \Sigma_c(A)$. Рассмотрим компактное возмущение $K = -A\colon A + K = A - A = 0$, но у нуля нет непрерывного спектра. По лемме (см. соотв. главу) из того, что

 $\lambda \in \Sigma_c(A)$ следует существование некомпактная последовательности $||x_n|| = 1$ и $(A - \lambda)x_n \to 0$. Обратно же неверно. Пример: $A = 0, \ \lambda = 0, \ h_n = e_n$ — OHC.

5.3. Полезные утверждения, примеры, факты

5.3.1. К теореме Банаха – Штейнгауза

Покажем, что в принципе равномерной ограниченности нельзя убрать требование банаховости пространства X.

Пример 3.1. Пусть X — пространство финитных последовательностей, а $Y = \ell_1$. Определим семейство операторов так:

$$A_n(x_1,...,x_n,...) := (0,...,nx_n,0,...).$$

Для каждой финитной последовательности $x=(x_1,\ldots,x_N,0,0,\ldots)$ найдётся нужная константа C_x : достаточно взять $C_x=N$. С другой стороны, $\|A_n\|=n\to\infty$ при $n\to\infty$.

5.3.2. К ТЕОРЕМЕ БАНАХА ОБ ОБРАТНОМ ОПЕРАТОРЕ

Покажем, что полнота пространств в теореме Банаха существенна.

Пример 3.2. Пусть $X={\bf C}[0,1]$ с чебышёвской нормой, а $Y={\bf C}[0,1]$ с интегральной нормой. Тогда X полно, а Y, очевидно, нет. Рассмотрим тождественный оператор ${\rm id}\colon X\to Y$. Очевидно, $\|{\rm id}\|\leqslant 1$, но оператор ${\rm id}^{-1}$ не является ограниченным. В самом деле, рассмотрим $f_n:=n\chi_{\left[0,\frac{1}{n}\right]}$ и чуть-чуть их сгладим, чтобы они стали непрерывными. Тогда их интегральная норма будет близка к 1, а чебышёвская — неограниченно возрастать. Значит, ${\rm id}^{-1}$ не является ограниченным оператором.

Определение. Базис Гамеля — такая система векторов $\mathcal{B} \subset L$, что всякий вектор $x \in L$ единственным образом представляется в виде конечной линейной комбинации векторов из \mathcal{B} .

Теорема 5.5. Всякое линейное пространство L обладает базисом Γ амеля.

 \square Существенно использует аксиому выбора, поэтому в справедливость этой теоремы можно либо верить, либо не верить. \blacksquare

В предположении справедливости этой теоремы, можно легко построить пример неограниченного оператора в любом бесконечномерном пространстве. Пусть Γ — базис Гамеля пространства L. Выберем счётное подмножество среди базисных элементов и занумеруем их, получим набор $\{\gamma_i\}$. Считаем, что базисные вектора имеют единичную длину. Зададим действие оператора на базисных векторах: положим $A\gamma_i=i\gamma_i$, а для всех остальных базисных векторов $e\in\Gamma\setminus\{\gamma_i\}$ положим Ae=0. Тем самым мы задали действие оператора на всех векторах пространства L, ибо всякий вектор единственным образом разлагается по нашему базису. Поэтому, если $x=\sum_{i=1}^n a_i e_i$, то $Ax=\sum_{i=1}^n a_i Ae_i$ и тем самым оно однозначно определено. Вместе с этим ясно, что оператор A неограничен, поскольку для всякого M>0 найдётся вектор, который растягивается этим оператором больше, чем в M раз.

Пример 3.3. Из теоремы о базисе Гамеля следует, что на всяком бесконечномерном пространстве существует неограниченный линейный оператор. Аналогично строится и неограниченный линейный функционал, именно, возьмём $\varphi(\gamma_i) = i \, \|\gamma_i\|$, а на всех остальных векторах базиса положим его равным нулю. Тогда возьмём какое-нибудь полное пространство X и оснастим его другой нормой $\|\cdot\| := \|\cdot\|_L + \|\cdot\|_{\varphi}$, то есть положим $\|x\| := \|x\|_L + |\varphi(x)|$. Обозначим новое пространство через L_{φ} и рассмотрим неограниченный оператор $\mathrm{id} \colon L \to L_{\varphi}$. Рассмотрим оператор $\mathrm{id} \colon L_{\varphi} \to L$. Его норма, очевидно, не превосходит 1, однако обратный оператор неограничен, поскольку норма i-ого базисного вектора увеличивается в (1+i) раз.

Покажем что в теореме Банаха существенно требование существования алгебраического обратного отображения.

Пример 3.4. Возьмём оператор правого сдвига в пространстве ℓ_p . Он действует так:

$$Rx = R(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

Понятно, что ||R||=1. Очевидно, что левый обратный оператор существует — это левый сдвиг L, причём он тоже ограничен. Но правого обратного не существует, поскольку $\operatorname{Im} R \neq \ell_p$, значит, не для каждого вектора будет выполнено равенство RLx=x.

5.3.3. Сопряжённый аналог ТБШ

Теорема 5.6 (Аналог принципа равномерной ограниченности для сопряжённых пространств). Слабо ограниченная последовательность ограничена по норме.

Пусть x_i — слабо ограниченная последовательность. Это значит, что для всякого $f \in X^*$ существует число C_f такое, что для $\forall i$ имеем $|f(x_i)| \leq C_f$. Докажем, что найдётся такое C, что $||x_i|| \leq C$ для всех i. Рассмотрим семейство множеств

$$F_n := \{ f \in X^* \colon \forall i \text{ имеем} |f(x_i)| \leqslant n \}.$$

Очевидно, что $X^* = \bigcup F_n$. Поскольку X^* полно и потому не есть множество первой категории, найдётся F_N такое, что оно не является нигде не плотным в X^* . Значит, есть шар, где оно всюду плотно.

Покажем, что все множества F_n замкнуты. Для этого докажем, что дополнения к ним открыты. Возьмём какой-нибудь элемент $f \notin F_n$. Значит, $\exists j$, для которого имеем $||f(x_j)|| > n$. Покажем, что найдётся окрестность элемента f, не пересекающаяся с F_n . Пусть $g \in X^*$, тогда

$$|(f+g)(x_j)| \ge |f(x_j)| - |g(x_j)|.$$

Поскольку набор множеств F_n покрывает всё пространство X^* , найдётся M, для которого имеем $g \in F_M$. Поэтому для всех i имеем $|g(x_i)| \leq M$. Рассмотрим функционал $h = \lambda g$. Поскольку M уже зафиксировано, число λ можно выбрать таким, чтобы для всех i число $|h(x_i)|$ было сколь угодно маленьким. Если это число выбрать правильно, то можно считать, что сохраняется неравенство

$$|(f+h)(x_j)| \ge |f(x_j)| - |h(x_j)| > n.$$

Действительно, $|f(x_j)| > n$, значит, можно отнять от него настолько маленькое число так, чтобы результат всё ещё был больше n. Это и означает, что искомая окрестность элемента f найдена.

По лемме, множество F_N содержит некоторый шар B. Достаточно установить равномерную ограниченность для функционалов в некотором шаре, содержащем начало координат. Пусть \widetilde{B} — копия шара B с центром в начале координат. Каждый функционал $g \in \widetilde{B}$ можно представить как $f_1 - f_2$, где $f_i \in B$. В силу неравенства треугольника и определения множества F_N для всех i получаем $|g(x_i)| = |f_1(x_i) - f_2(x_i)| \leqslant N + N = 2N$.

Рассмотрим образ исходной последовательности в пространстве X^{**} . Докажем, что он ограничен. Но это только что было установлено, поскольку мы получили, что некоторое множество коковекторов равномерно ограничено на шаре с центром в начале координат. \blacksquare

5.4. Service Pack 3 (Юра Притыкин)

Доказательство леммы о слабой компактности шара в гильбертовом пространстве H без свойства сепара-бельности:

Надо доказать, что из последовательности $\{x_n\}$ можно выбрать слабо сходящуюся подпоследовательность. Рассмотрим подпространство H_0 , порожденное всеми элементами последовательности $\{x_n\}$, и замкнём его. Получим некоторое сепарабельное гильбертово подпространство в H. Оно не более чем счётномерно. Выберем в нем счетный базис и применим к нему доказанную лемму. Поэтому если мы можем найти такую последовательность в сепарабельном гильбертовом, то и в любом гильбертовом.