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Preface

When, a few years ago, we began the redaction of this book, we had the naive
thought that the theory of mixed and hybrid finite element methods was ripe
enough for a unified presentation. We soon realized that things were not so
simple and that, if basic facts were known, many obscure zones remained in
many applications. Indeed the literature about nonstandard finite element method
is still evolving rapidly and this book cannot pretend to be complete. We
would rather like to lead the reader through the general framework in which
development is taking place.

We have therefore built our presentation around a few classical examples:
Dirichlet’s problem, Stokes problem, linear elasticity, ... They are sketched
in Chapter I and basic methods to approximate them are presented in Chapter
IV, following the general theory of Chapter II and using finite element spaces
of Chapter III. Those four chapters are therefore the essential part of the book.
They are complemented by the following three chapters which present a more
detailed analysis of some problems.

Chapter V comes back to mixed approximations of Dirichlet’s problem
and analyses, in particular, the (lambda)-trick that enables to make the link
between mixed methods and more classical non-conforming methods. Chapter
VI deals with Stokes problem and Chapter VII with linear elasticity and the
Mindlin-Reissner plate model.

The reader should not look here for practical implementation tricks. Our
goal was to provide an analysis of the methods in order to understand their
properties as thoroughly as possible. We refer, among others, to the recent
work of BATHE [A] or HUGHES [A] or to the classical and indispensable book
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of ZIENKIEWICZ [A] for practical considerations. We are of course strongly
indebted to CIARLET [A] which remains the essential reference for the classical
theory of finite element methods. Finally we also refer to ROBERTS-THOMAS
{A] for another presentation of mixed methods.

This book would never have come to its end without the help, encour-
agement and criticisms of our friends and colleagues. We must also thank all
those who took the time reading the first draft of our manuscript and proposed
significant improvements. We hope that the final result will better than what

one might expect, according to the quotations thereafter, of the hybrid resulting
of a collaboration between Pavia and Québec.

Apris atque sui setosus nascitur hybris. (C. Plinius Caecilius Secondus.)

Mixtumque genus prolesque biformis. (Publius Virgilius Maro.)
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I

Variational Formulations and Finite
Element Methods

Although we shall not define in this chapter mixed and hybrid (or other non-
standard) finite element methods in a very precise way, we would like to situate
them in a sufficiently clear setting. As we shall see, boundaries between dif-
ferent methods are sometimes rather fuzzy., This will not be a real drawback
if we nevertheless know how to apply correctly the principles underlying their
analysis.

After having briefly recalled some basic facts about classical methods, we
shall present a few model problems. The study of these problems will be the
kernel of this book. We shall thereafter rapidly recall basic principles of duality
theory as this will be our starting point to introduce mixed methods. Domain de-
composition methods (allied to duality) will lead us to hybrid methods. Finally,
we shall present a few ideas about transposed formulations as they can help to
understand some of the weak problems generated by the previous methods.

1.1 Classical Methods

We recall here in a very simplified way some results about optimization methods
and the classical finite element method. Such an introduction cannot be complete
and does not want to be. We refer the reader to CIARLET [A] or RAVIART-
THOMAS [D], among others, where standard finite element methods are clearly
exposed. We also refer to DAUTRAY-LIONS [A] where an exhaustive analysis
of many of our model problems can be found.

Let us then consider a very common situation where the solution of a
physical problem minimizes some functional (usually an “energy functional”),
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in a “well chosen™ space of admissible functions V that we take for the moment
as a Hilbert space,

(1.1) inf J(v).

If the functional J(.) is differentiable (cf. EKELAND-TEMAM [A] for in-
stance), the minimum (whenever it exists) will be characterized by a variational
equation

(1.2) (J'(w),v)yixy =0, YveV,

where {-, Jysxy denotes duality between V and its topological dual V", the
derivative J'(u) at point u being considered as a linear form on V.

A classical method, Ritz’s method, to approximate the solution of (1.1)
consists in looking for u,,, € V;,,, where V,,, is a finite-dimensional subspace of
V', which is solution of the problem

(1.3) inf  J(vm)

Ym €V
or, differentiating,
(1.4) (I(um), vm)veixy =0, Yom € V.
Let us consider to fix ideas the quadratic functional

(1.5) J(v) = %a(v, v) — L(v),

where a(-,-) is a bilinear form on V', which we suppose to be continuous and
symmetric, and L(-) is a linear form on V. The variational equation (1.4) can
then be written as: u,, € V,,, and

(1.6) a(tm, Um) = L(vm), YU, € Vi
If a basis wy,wa, ..., w, of V,, is chosen and if one writes
(17) Um = Zalwl)

=1

problem (1.6) is reduced to the solution of the linear system

m
(1.8) dajei=b, 1<j<m,
1=1

where one defines

(1.9) a,, = a(w,,w,), b; = L(w,).
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This formulation can be extended to the case where the bilinear form a(,-) is
not symmetric and where problem (1.6) no longer corresponds to a minimization
problem. This is then usually called a Galerkin’s method. Let us recall that
problems of type (1.6) will have a unique solution if, in particular, the bilinear
form a(+,-) is coercive, that is, if there exists a positive real number « such that
forall v in V

(1.10) a{v,v) > a“v”%/.

The above-described methodology is very general and classical. We can
consider the finite element method to be a special case of it in the following
sense.

The finite element method 1s a general technique to build finite-dimensional
subspaces of a Hilbert space V in order to apply the Ritz—Galerkin method to
a variational problem.

This technique is based on a few simple ideas. The fundamental one is
the partition of the domain €0 in which the problem is posed into a set of
“simple” subdomains, called elements. These elements are usually triangles,
quadrilaterals, tetrahedra, etc. A space V' of functions defined on Q is then
approximated by “simple” functions, defined on each subdomain with suitable
matching conditions at interfaces. Simple functions are usually polynomials or
functions obtained from polynomials by a change of variables.

This is of course a very summarized way of defining finite elements and
this is for sure not the best way to understand it from the computational point
of view. We shall come back to this in Chapter III with a much more workable
approach.

The point that we want to emphasize here is the following. A finite element
method can only be considered in relation with a variational principle and a
functional space. Changing the variational principle and the space in which it
is posed leads to a different finite element approximation (even if the solution
for the continuous problem can remain the same).

In the remainder of this chapter, we shall see how different variational
formulations can be built for the same physical problem. Each of these for-
mulations will lead to a new setting for finite element approximations. The
common point of the methods analyzed in this book is that they are founded on
a variational principle expressing an equilibrium (saddle point) condition rather
than on a minimization principle. We shall now try to see, on some examples,
how such equilibrium principles can be built.
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1.2 Model Problems and Elementary Properties of Some
Functional Spaces

The aim of this section is to introduce notation and to present four model
problems that will underlie almost all cases analyzed in the book. They will
be the Dirichlet problem for the Laplace equation, linear elasticity, the Stokt?s
problem, and finally a fourth-order problem modeling the deflection of a thin
clamped plate. These problems are closely interrelated and methods to analyze
them will also be.

We shall present, in this section, the most classical variational formulation
of these problems. The following sections will lead us to less standard forms.

We shall assume, in our exposition, that the problems are posed in a domain
Q) of IR", with a sufficiently smooth boundary 92 = T (for instance a Lipschitz
continuous boundary). In practice n = 2 or 3, and we shall present most of our
examples in a two-dimensional setting for the sake of simplicity. In lhe.pr.oblems
considered here, working in IR? rather than in I?* is not really restrictive and
extensions are generally straightforward. (This is however not always the case
for numerical methods).

Let us first set a few notation. We shall constantly use the Sobolev spaces
( ADAMS [A], LIONS-MAGENES [A], NECAS [A]). They are based on

/ lv[*de = Hvlliﬂ(n) < +°°} )
Q

the space of square integrable functions on €. (These functions must of course
be measurable). We then define in general, for m integer > 0,

e r@={.

(2.2) Q) = {v| D*v € L*(Q), V|a| < m},
where Hlol
v
Y= = ~--+an’
D%y 61:(1"~~8:r'g"’|a| a +

these derivatives being taken in the sense of distributions. On this space, we
shall use the semi-norm

(2.3) laa= Y ID[iaqy

jal=m
and the norm

(2.4) o2 e= > Ivlia-

k<m

The space L?(Q) is then I7°(2) and we shall usually write |v|pq to de-note
its norm [|v||z2(q). Let us denote, as usual, by D(S2) the space of indefinitely
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differentiable functions having a compact support in €, and by H*(Q) the
completion of D(£2) for the topology defined by the norm (2.4). If the boundary
is smooth enough (e.g., Lipschitz continuous boundary), this simple definition
will coincide, without troublesome pathologies, with more sophisticated ones.

Among the spaces introduced, the most commonly used, apart from LQ(Q),
will be H1(Q), HY(R), H%*(Q), and HE(Q).

If the boundary 952 is sufficiently smooth, (we consider only Lipschitz con-
tinuous boundaries), one can show that there exists an operator g : HI(Q) —
L*(T'), linear and continuous, such that Yov = trace of v on I' for every v
smooth [say, to fix the ideas, for every v € C'(Q2)]. It then scems natural to
call yov “the trace of » on I, and denote it by v|r even if v is a general
function in H'(Q). A decper analysis shows that by taking all the traces of all
the functions of #'(Q2) one does not obtain the whole space L2() but only a
subspace of it. Further investigations show that such a subspace contains H'(T")
as a proper subset. Hence we have,

oY (T) C yo(H' () € LX) = HO(I),

where every inclusion 1s strict. It is finally recognized that the space yo(H1(2))
belongs to a family of spaces I7*(T) (that we are not going to define here) and
corresponds exactly to the value s = 1/2. Hence we have

HYA(T) = 50(H'())

with
t/2 = inf 1 .
llgllzrs () uell:rl(n)”v“H (1)

YoU=¢g

In a similar way, one can see that the traces of functions in H?(R) belong to a
space H*(T') for s = 3/2. We may therefore set

HYX(T) = yo(H (),

lollsrory =t [lugey.
YoU=g
This can be generalized to the traces of higher-order derivatives. For instance,
if the boundary T is smooth enough, one can define dv/dn|. € HY*(T) for
v € H2(Q). We shall not discuss in a more precise way trace theorems on
Sobolev spaces of fractional order. (The rcader may refer to the authors quoted
above.) Intuitively, Sobolev spaces of fractional order can be considered as
having regularity properties that are intermediate between the properties of the

neighboring integer-order spaces and they can indeed be defined as interpolation
spaces. Taking this as granted, we then have

(2.5) Ho(Q) = {v] v € H'(Q), v|. =0},
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2 2 31}
(2.6) Hiy(Q)=<v|lveH (Q), U|I‘:O, _B—EIFZO .

For v € H(Q), we have the Poincaré inequality,
2.7 lvlo,o < C(Q)v]ia

and the seminorm | - |, o is therefore a norm on I{§(Q2), equivalent to || - |[; q-
We shall also need to consider functions that vanish on a part of the boundary;
suppose I' = D U N, a partition of T into disjoint parts, one then defines

(2.8) Hip(Q) = {v]ve H'(Q), v|, =0}

and one has H}(Q) C HE 5(Q) € H(R2). In Chapter 111, we will discuss the
properties of these spaces; the above definitions are sufficient to allow us to
present some examples.

Example 2.1: Boundary value problems for the Laplace equation.

This is a very classical case that in fact led to the definition of Sobolev spaces.
Let us consider, on H} (), f € L?(2) being given, the following minimization
problem

2.9 inf l/ radvzdz—/ v dz,
@9) veryo) ? nlg— | nf

where |grad v|? = ‘81}/82}1[2 + l@v/@xz‘z = grad v - grad v. One shows
easily (cf. CEA [A], LIONS-MAGENES [A], NECAS [A] for instance) that
this problem has a unique solution u, characterized by: u € H(Q) and

(2.10) / gr_a_duAgggdvda::/ fvdz, Yv € Hy(Q).
o Q

This solution u then satisfies, in the sense of distributions,

{—Au = finQ,
(2.11)

“lr‘zo’

which is a standard Dirichlet problem. If HE(SQ) were replaced by Hy (1),
one would get instead of (2.11), a mixed type problem

—Au=finQ,
@ 12) up =0,
ou o)

N

an
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‘We thus have Dirichlet boundary conditions on D and Neumann conditions on
N. In particular, for N = I", we get a Neumann problem. It must be noted that
minimizing (2.9) on H(Q) instead of H{(2) will define u up to an additive
constant, and requires the compatibility condition [, fdz = 0, which can be
seen to be necessary from (2.10), taking v =1 in Q.

If we denote by H~'/%(T) the dual space of H/?(T'), and we take g €
H~Y*(T), we can consider the functional

(2.13) %/ ]g@dv|2d$—/fvd:c—(g,v),
Q a

where the bracket {-,-) denotes duality between H~1/2(T") and H'/%(T). We
shall sometimes write formally [.gv ds instead of (g,v). Minimizing (2.13)
on Hy () leads to the problem

~Au=fin®,
2.14) ulp =0,

du

6_n|N =9

When D = 0 the solution is defined up to an additive constant and we must
choose f and g such that [, f dz — [.g ds = 0.

These problems are among the most classical of mathematical physics and
we do not have to emphasize their importance. In the following chapters we
shall need to use regularity results for the problems introduced above. We have
supposed up to now f € L2(Q). For the Dirichlet problem (2.11) we could have
assumed f to belong to a weaker space, namely, f € H~1(Q) = (HL(Q)),
and nevertheless obtained u € H}(Q). Indeed, if f is taken in L?(2) and
the boundary T is Lipschitzian and convex, one can prove (NECAS [A]) that
u € H%() and that

(2.15) Jull2,e < clfloq-

Regularity results are essential to many approximation results and are funda-
mental to obtain error estimates. We refer the reader to GRISVARD [B] for the
delicate questions of the regularity of the general problem (2.12) in a domain
with corners. O

Example 2.2: Linear elasticity.

We shall try to determine the displacement u = {u;, us} of an elastic material
under the action of some external forces. We suppose the displacement to
be small and the material to be isotropic and homogeneous. (CIARLET [A],
MARSDEN-HUGHES [A]). The domain Q is the initial configuration of the
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body. To set our problem, we must introduce some notation from continuum
mechanics. First we define the linearized strain tensor g(v) by

1/78u; Oy
(2.16) gij(v) = 5 (5;; + Bas )

The trace tr(g) of this tensor is nothing but the divergence of the displacement
field

2.17) tr(g)(v) = divuy.
We shall also use the deviatoric gD of the tensor g, that is,

(2.18) P =¢g-

tr(e)d,

o=

where § is the standard Kronecker tensor. The deviatoric is evidently built to
have tr(gD) = 0. Let then Ty be a part of T' on which we assume u = 0. We
also assume the existence in Q2 of a distributed force f (e.g., gravity) and on Iy
of a traction g that is decomposed into a normal part g, and a tangential part g,
(Figure 1.1). We denote by n and ¢ the normal and tangential unit vectors to T.

Figure L1

Let us denote

(2.19) e’ =) el =¢€:¢,
i

and let us consider in (H} 1, (©2))* = V' the minimization problem
inf{/ LOdivel + 2ple (o)) de —/ fovde
eV ') 2 = Q- -

—/ gny-nds—/ gtyidS}.
r, r,

(2.20)

81.2 Mixed and Hybrid Finite Element Methods 9

Constants A and p, the Lamé coefficients, depend on the physical properties of
the material considered. Solution u of this problem is then characterized by

Z,u/ e(u) g(v) de + /\/ divy dive dz
(2.21) o o

= f-vdr+/ gny-nd3+/ g1 v-tds.
(s Iy r,

We now use the classical integration by parts formula, m being some tensor,
2.22) / m:g(v)dz = — / (divim) -vde +/ Mpnt -nds+ | mav-1ds,
o 7 0 - r r

where m,,» and m,, denote the normal and tangential parts of the traction vector
my, i.c.,

My, = Zm,-] n;nj = Z{ Zm,-J nj}n,- = Z(mn), n;,
i,j H 1

1

My = Zmi]ti n; = Z{ Z 7711']'71]'}& = Z(Iﬂn)z i
ij i

t J

(2.23)

Equation (2.21) can now be interpreted as

~(2u divg(g) +Agraddivu) = fin Q,

=0
(2.24) o
2uenn + A leﬂ = gn ON Fl:

2uen = g on Iy,

Let us now introduce the stress tensor s = s” + pé and the constitutive law
£=35 re

D __ D
225) 57 =2ne" (),
p=2(A+p) divuy,

relating stresses to displacements. It is now clear that the first equation of (2.24)
expresses the equilibrium condition of continuum mechanics,

(2.26) divs+ =0

In applications, the constitutive law (2.25) will vary depending on the type
of materials and will sometimes take very nonlinear forms. Moreover, large
displacements will require a much more complex treatment. Nevertheless the
problem described remains valuable as a model for more complicated situations.

The case of an incompressible material is specially important. It leads to
the same equations as in the study of viscous incompressible flows. O
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Example 2.3: Stokes problem for viscous incompressible flow.
We now consider a low velocity flow of a viscous incompressible fluid in a
domain ©. We denote by u the velocity field and by ¢(u) the (linearized)

strain rate tensor defined in the same way as g in (2.16). We thus consider
the mimimization problem with the same notation and the same space V' as in
Example 2.2, but now with the incompressibility condition divy = 0, that is,

(2.27) inf ,u/la(y)[g—/f vdz—{—/ gn_v_-ﬂds+/ giv-tds.
vev Q= [t r r

dive =0

As we shall see later, problem (2.20) can be considered, when X is large, as
an approximation (by a “penalty method™) of problem (2.27). When X is large,
the second constitutive relation of (2.25) becomes meaningless. We shall see in
Section 1.3 that pressure can be introduced as a Lagrange multiplier associated
with the constraint dive = 0.0

We finally present as a last example a fourth-order problem. It is again
physically an elasticity problem but in a special modelization.

Example 2.4: Deflection of a thin clamped plate.

We consider here the problem of a thin clamped plate deflected under a dis-
tributed load f. The physical model will be described in Chapter VII. We also
refer to CIARLET [B] and CIARLET-DESTUYNDER [A] for more details on
plate problems. Under reasonable assumptions, one obtains that the vertical
deflection u is a solution of the minimization problem

(2.28) inf 1/ |Av|2da:—/ fude.
2 o Q

ve H2(51)

The unique solution u is characterized by
(2.29) / AulAvde = / fvdz, Yv € HZ(Q)
Q a

and is the solution of the boundary value problem

Alu = f,
(230) 'Ulp = 0,
oo,

For these boundary conditions (representing a clamped plate) one may use,

instead of (2.28), the formulation

1 8%\’ 9% } /
; z — - d d
@231) UE}?gf(n) 2 /n [{ dx? } +2 { dz10z2 } {61:2 j‘ a= | Jvde
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These two equivalent forms can lead to two different numerical methods. It must
also be noted that natural boundary conditions (those arising from integration
by parts) will not be the same if (2.28) and (2.31) are minimized on a space
larger than HZ(Q). Actually the true potential energy of the plate (that is, the
true functional which has to be minimized) is given by

12(1 /{”IA“‘2+(1 ”)[(8 v) Q(ai;@)z

+(§;§' }dz—/ﬂfvdx

where E is Young’s modulus, v the Poisson’s coefficient, and t the thickness
of the plate. In particular, £ and v can be expressed in terms of the Lamé
coefficients A, g in the following way:

J(v) =
(2.32)

A+2 A
(2.33) po M2 A
At p 2(A + p)
We also recall that the Stokes problem (2.27) can also be expressed as a
biharmonic problem by the introduction of a stream function v such that

(2.34) {612 - (?1:1

We shall come back to this point in Section 1.3, 0

The examples presented are among the most fundamental of mathematical
physics and engineering problems. A good understanding of their properties
will enable one to extend the results obtained to more complex situations.

[.3  Duality Methods

I.3.1 Generalities

Up to now, we have introduced four problems that can be written as minimiza-
tion problems of some functionals in properly chosen functional spaces. This is
the most classical way of setting these problems. Finite element approximations,
based on the formulations described earlier, are routinely used in commercial
codes. Various reasons justified the introduction, for these same problems of
different variational formulations and therefore different finite element approx-
imations. This was done at the beginning by many engineers. The reader may
refer, for example to REISNERR [A]-[B], PIAN-TONG [A].

The first reason may be the presence in the variational formulation of a
constraint, such as the condition divy = 0 in problem (2.27). As we shall see,
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it is difficult (and not necessary) to build finite element approximations satis-
fying exactly this constraint. It will be more efficient to modify the variational
formulation and to introduce pressure.

A second reason may lie in the physical “importance” of the variables
appearing in the problem. In clasticity problems, for example, it is often more
useful to compute accurately stresses rather than displacements. In the standard
formulation, stresses can be recovered from the displacements by (2.25) or
some other analogue law. Their computation requires the derivatives of the
displacement field u. From a numerical point of view, differentiating implies a
loss of precision. It is therefore appealing to look for a formulation in which
constraints are readily accessible.

A third reason comes from difficulties arising in the discretization of spaces
of regular functions such as HZ(£2) appearing in Example 2.4. Approximating
this space by a finite element method implics ensuring continuity of the deriva-
tives at interfaces between elements. This is possible but more cumbersome
than approximating, say, IT1(2). A variational formulation enabling to decom-
pose a fourth-order problem into a system of second-order problems permits one
to avoid building complicated clements at the price of introducing some other
difficulties.

Finally, a last reason could be to look for a weaker variational formulation
corresponding better in some cases to available data (e.g., punctual loads) for
which standard formulations may become meaningless due to a lack of regularity
of the solution.

We must also point out that the “nonstandard” formulations which we
shall now describe have been initially introduced by engineers for one or some
of the rcasons discussed above. We quote in this respect, but in a totally
non exhaustive way, FRAEIJS DE VEUBEKE [A], HELLAN [A], HERMANN
[A], PIAN [A], TONG-PIAN [A]. On the other hand, very powerful tools for
the transformation of variational problems can be found in convex analysis and
duality theory (AUBIN [B], BARBU~PRECUPANU [A}, EKELAND-TEMAM
[A], ROCKAFELLAR [A]). It is neither possible nor desirable here to develop
duality theory and we shall restrict ourselves to the most basic facts. The
fundamental idea of duality theory is that one can represent a convex function
by the family of its tangent affine functions. This is indeed the principle of
the classical Legendre transformation. More precisely, let us define for a given
convex function f(v), defined on a space V, the conjugate function f*(v*) on
the dual space V' of V by

3.1 [ (v*) = sup{v,v* )y xv: — f(v).
veEV

Note that when V' = IR, f*(v*) is the intercept with the v axis of the tangent
to f of slope v*. The important point for what follows is that one can build
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f(v) from f*(v*) by the following formula, symmetrical to (3.1),

(32) f(v) = sup (", v)vixy = F*(v°).
Sup,

Given then a problem of the form

3.3 i

(3.3) Jnf g(v) + f(v),
we can use (3.2) to obtain

(3.4) uigg{g(v) + Ufggl(v*,v)v'xv - f"(v*)}»

that is, the saddle point problem

(3.5) inf sup g(v) + (v*,v)vixv — f*(e").
veV vreV!

Under simple regularity assumptions, one can then consider the dual problem

(3.6) sup {inf 0(0) + (0 whvrey = ()}

We now demonstrate on examples how this technique can be applied.
1.3.2 Examples for symmetric problems

Example 3.1: Introduction of pressure in Stokes problem.

Let us consider problem (2.27) where, to make the presentation easier, we take
I'y = T, that is, pure Dirichlet conditions on the boundary. This constrained
problem can be written as an unconstrained problem, introducing the character-
istic function 6(-|{0}) defined on L2(Q) by

0 ifv=0

+oo  otherwise.

(37 s(ol(on = {
It is thus a pure change of notation to write, instead of (2.27),
(338) i [1e@P ds - [ 10+ s(aval{o)),
where V = (H(€2))?. On the other hand, one clearly has

69  d@ivalEh = s [ gdvudz,  vue (IR,
gelLl?(Q)Jan
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and the minimization problem (3.8) can be transformed into the saddle point
problem

(3.10) inf sup u/ le(v)|2d:c—/i~gd:c—]qdivyd:c.
Q= Q Q

vEV geL3(Q)

This apparently simple trick has in reality completely changed the nature
of the problem. We now have to find a pair (u,p) solution of the variational
system

Qu/ s(y):s(y)da:—/f-vd:c—/pdivyd:z:[), Yv eV,
Q= = o Q

(3.11)
] gdivude =0, Vg € L3(Q).
Q

The second equation of (3.11) evidently expresses the condition divy = 0. In
order to use (3.11), we shall have to show the existence of a saddle point (&, p),
in particular the existence of the Lagrange multiplier p. This will be done in
Chapter II. The variational system (3.11) can be interpreted in the form

— 2pAu+gradp = f,
(3.12) divu =0,
ulr =0,

where one uses the operator Au = div (1)

o, 10 (0w oy
| 022 20z, (Ozo Oy

(313) Au = 32112 N li QE_I_ le_}
oz2 28z, LOza Oz

Under the divergence-free condition divu = 0, this can also be written

(3.14) { pou e -

divu = 0,
which is the classical form of the Stokes problem. O

Problem (3.10) has the general form

(3.15) inf sup L(v, ¢),
veV qeQ
where L(v, q) is a convex-concave functional on V x Q. If one first eliminates

¢ by computing
J(v) = sup L(v, q),
9EQ
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one falls back on the original problem, the primal problem. Reversing the order
of operations (this cannot always be done, but no problems arise in the examples
we present), and eliminating v from L(v, ¢) by defining
(3.16) J*(¢) = inf L(v,q)

v

leads to the dual problem

(3.17) sup J*(q).
9€Q

We now apply this idea to the previous examples.

Example 3.2: Dual problem for the Stokes problem.

In the case of Stokes problem, the dual problem can be expressed, as we shall
se.e,.in many equivalent ways. In order to find it, we must, given g, find the
minimum in v of L(v,q) = p [, [e(v)I? de — [, f - v de — [ ¢ div v dz. This
minimum is characterized by -

(3.18) Qp/g(gq):é(g) d:z:—/f-v—/qdivydz:(), Yv eV,
Q= = [ Q

denoting by u, the minimum point. Making v = u, this gives

(3.19) 2,;/ le (u,) I d:c—-/f~u d:c——/qdivg dz = 0.
a = a— 1 Q !

Using (3.19) to evaluate L(u,, ¢), the dual problem can be written as an optimal
control problem,

(3.20) sup [ 2(a,) [ da,
geL?(N) 0=

where u, is the solution of

(321) —2u qu + gﬂd q= i,
u,lr = 0.

Denoting by G the Green operator defining the solution of (3.21), that is,
(3.22) u, = G(f — grad q),

and using (3.22) in (3.20), one can get from (3.19)

(3.23) irqlf/ng@dq-G(g@d q) dz—/ G(f) - grad ¢ d=.
o
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One notices that this dual problem is a problem in grad ¢. It is well known that
the solution p is defined (for Dirichlet conditions on u) only up to an additive
constant. One can interpret (3.23) as the equation

(3.24) div(G grad q) = div(Gf).

If one defines on V' = (I/=1(2))? the norm,

(3.25) WfIIE = (GS, Fyvxvr,
problem (3.23) can be written as a least-squares problem
3.26 inf 4 dg—f||%.0
(3.26) qegg(n)zllg@ q-fllg

The presence of a Green operator makes this dual problem difficult to handle
directly. It is however implicitly the basis of some numerical solution procedures
(FORTIN-GLOWINSKI [B], THOMASSET [A]). We will present other dual
problems that will have direct importance and that will be handled as such.

Example 3.3: A duality method for nearly incompressible elasticity.

We already noted in Example 2.2 and Example 2.3 that the linear elasticity prob-
lem and Stokes problem are very close when a nearly incompressible material
is considered. We now develop this analogy in the framework of Example 3.1.
The starting point will be the obvious result,

(3.27) i‘/ }divy|2 dz = sup /qdivgdz——l—/ {q]2 dz.
2 Ja ceL2() Ja 2X Ja

Substituting (3.27) into (2.20) we get, by the same methods as in the previous
examples, the problem

1
inf  sup ,u/ |§(g)|2dr—/qdivyda:——/ lg|? de
VeV geL2(n) Ja - a 2X Ja

- f'vdr-/ gny-ﬂds—/ gt v -tds.
[ T ry

The solution (u, p) of problem (3.28) is characterized by the system
2p / e(u) : g(v) do — / pdivuyde
[t - 9]

(3.29) :/i-gd:c+/ (gnv-ntgev-t)ds, VvelV,
Q 'y

(3.28)

1
/qdivy{—x/npqd:c:O, Yq € L*(9).
Q

This can be summarized by saying that we transformed our original problem into
a system by introducing the auxiliary variable p = A divu. It must be noted that
this also makes our minimization problem become a saddle point problem. We
shall see in Chapter VI that this apparently tautological change has implications
in the building of numerical approximations to (2.20) that remain valid when X
is large. 0
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Example 3.4: Dualization of the Dirichlet problem.

The result that we shall get here can be obtained by many methods. Techniques
of convex analysis permit one to extend what appears to be a trick to much
more complex situations. However it will be sufficient for our purpose to use
the simple development below. Let us then consider the Dirichlet problem,

. 1
(3.30) inf —/ | grad v[? dz:-/fv dz.
2 Ja Q

vel ()

In many applications grad v rather than v is the interesting variable. For instance,
in thermodiffusion problems, grad v will be the heat flux, which is very often
more important to know than temperature v. What we now do is essentially to
introduce the auxiliary variable p = grad v to transform our Dirichlet problem
into a system. To do so, we use the same trick as in Example 3.3 and write

(3.31) %/ |grad v dz =  sup / q~ggdudz—%/ lq|* dz
Q ge(Lr@y)rJa” Q-

which we use in (3.30) to get the saddle point problem

(3.32) inf sup——%/ lq|? dz‘—/ fv d:v+/q~g@d v d,
vEV ¢€Q Q" 9] (N

where V = H§(2 and Q = (L2(Q))?. The saddle point (u, p) is characterized
by B

/ﬂg-g.dan——/s;_q-gggduda;zo, Ve € Q,
(3.33)

/z-g@dvdz=/fvdm, Yv eV,
o e}

and this can be read as

— 1
(3.34) {g =gradu,  u€ Hy(Q),

divp+ f =0,

which is evidently equivalent to a standard Dirichlet problem.

The dual problem is readily made explicit. Writing it as a minimization
problem by changing the sign of the objective functional, we have

635) infy [P ds, Vg€ 7y = (g€ (BHO)|divg+ £ =0},
[ g g

This is the classical complementary energy principle. O
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We now want to get a weaker form of this problem. In order to do so,
we must introduce a new functional space which will frequently occur in the
following. We define

(3.36) (div; Q) = {q| ¢ € (L*(Q))?, divg € L*(Q)}
and its norm

(3.37) ||2||12!I(div,n) = “ﬁl“g,n + Ildivzllﬁ,n

that makes it a Hilbert space. It can then be shown, (TEMAM [A}]), by the
methods of LIONS-MAGENES [A], that vectors of H(div; ) admit a well
defined normal trace on T = OS2. This normal trace ¢ - n, lies in H~/*(T") and
one has the following “integration by parts” formula,

(338) / _q— g@d v dz + / leg vdr = (U,g‘ E)I{1/2(F)XH"U2(F)’
Q 1)

for any ¢ € H(div;Q2) and any v € H'(Q2). We shall often write formally
Jrvq - n ds instead of the duality product (v, ¢ - n}.

Example 3.5: Weak form of the dual Dirichlet problem.

If we take f € L%(Q), problem (3.35), which is a constrained problem, can
be changed into a saddle point problem, as in Example 3.1, by introducing a
Lagrange multiplier v € L%(f), that is, as ¢ now belongs to H (div; ),

(3.39) inf sup %—/ |q)? dr+/ fv d:c+/ v divg dz.
ge H(div,) veL?(Q) [ 0 e} -

The functional spaces employed precisely enable us to write every term in
(3.39) without ambiguity. We now look for a saddle point (u,p) satisfying the
variational system,

/B-gdr+/udivgdx:0, V¢ € H(div; ),
(3.40) @ o

/(divp + flvdz =0, Yv € L3(Q).
VR
Using (3.38) with ¢ - n|r = 0, we obtain from (3.40),

(3.41) p = grad u.

Now u € L*(Q) and grad u = p € (L%(Q))? imply that v € H!(Q) and it is
justified to consider its trace. Again using (3.38) with a general ¢ shows that
ulr = 0. The solution of our “weaker” problem is then the solution of the
standard problem. However the discretizations of problem (3.40) will be quite
different from those used for the standard formulation. O
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Remark 3.1: The previous formulation enables us to write directly in a varia-
tional form a nonhomogeneous Dirichlet problem. Indeed the solution (u, p) of
the saddle point problem with ¢ € H'/%(T),

(3.42) infsup%/ lq|? d:L’—I—/(ddi-}-f)v dz—/gq.nds,
g v Q- Q - r -

leads to p = grad w, divp+ f =0, u|r = g.

On the other hand, Neumann conditions become essential conditions that
have to be incorporated into the construction of p, that is, in the choice of the
functional space.

We now want to extend the previous results to the case of the linear elas-
ticity problem. We shall thus get a second way to dualize problem (2.20). It is
a general fact that there is no unique way to use duality techniques.

The lines of the development are the same as for Dirichlet problems and
we shall avoid to write the details. Let us then define,

(343)  H(div;Q), = {g| 055 € L}(Q), 015 = 0js, dive € (L¥(Q))?},

where div g is the vector 0o;2 /0y + Boiz /Oz. On this space we use the norm,

(3.44) ||g||2£(d_iv;n)' = Z/g |Cf1'1'|:2 dz + ||div g“(QLz(n))z,
= 7

which makes it a Hilbert space.

One can then define [as for H(div;Q)] the vector a,, € (H~'/*(T))?

(3.45) (gn)i = Y oij nj
;

and we shall mostly use the normal and tangential components, o, and o, ,
of this vector, as defined in (2.23). We then have the following “integration by
parts” formula:

(346) /gé(g) d$+/divlydm:<£niy>:<ann)2ﬂ>+(0nh2L)»
a - Q -

which is valid for any ¢ and y smooth enough. We have denoted by (-, -)
the duality between H~'/2(T) and H'/2(T) and shall often write the formal
expression fr Onn U -1 ds + fr oy v -t ds. We can now write our dual
formulation for the linear elasticity problem.
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Example 3.6: Dualization of the linear elasticity problem.
Following the same line as for the Dirichlet problem, we write

-/|5(v)|2 /ldIVU|2 de =  sup /gD P dz

cedi(div.a)y,

1 1
-}-/trgtrgdz——/ g_DZdaz———/trgzdz,
@ - 4p n|_| 2(A + p) n( o)

which leads us to the saddle point problem in H(div; Q) x (L*(2))?,

(3.47)

(3.48) mfsup2 / |tr o da:—}-—/ |0' |2 dz—{—/(dlv g+ f) vde.

The solution (g, u) of this saddle point problem is characterized by the system

dive+ f=0,

(3.49) tr @ =(A+p) tr g(u),
P =2ue"(w),

which are the equilibrium condition (2.26) and the constitutive relations (2.25).
The dual problem then consists in minimizing the complementary energy

(3.50) mf—/ |0' [2d1+2(/\:_ )/ﬂ|tr g|2 dz

under the constraint div ¢ + f = 0. Both the mixed formulation (3.48) and the
dual formulation (3.50) are used in practice. They lead to different although
similar approximations. O

To end this section we finally consider the thin plate problem of Exam-
ple 2.4 to introduce a mixed formulation due to CIARLET-RAVIART [C] and
MERCIER {A].

Example 3.7: Decomposition of a biharmonic problemn.

Again using the same technique as in the dualization of the Dirichlet problem in
Example 3.4, it is a simple exercise to transform problem (2.28) into the saddle
point problem

3.51) inf sup 1 e]? da:+/ u Av da:—}—/ fvdz,
( HEL() uEH2(ﬂ) o) |

and to get the dual problem

1
(3.52) inf —/ lu)? de,
9
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where M = {u € L*(), Ap+ f = 0}. Integrating by parts the term
Jon v dz, we get, as in Example 3.5, a weaker formulation

(3.53) inf sup %/ |u|? de
HELX(Q) veH2(0) ~ Jn

—/g&du~ggdvdm+/fvdz.
Q Q

Assume that (3.53) has a saddle point (w,u) with w € H'(2). Then (w,u) is
characterized by the variational system

/wu—/g@d;rg@dudw:(l, Yu € H'(Q),
(3.54) Q

/g@dw-g@dvdr:/fv dz,  Vve Hy(Q).
Q 193

If we use 1 = ¢ € D(Q) in the first equation and v = ¢ € D(N) in the second
one, we can interpret (3.54) as

—Au = w,
(3.55) ulp = 0,
—Aw = f.

The first equation of (3.54) also yields du/dn = 0, as we hope. In a sense, we
thus have in (3.55) too many boundary conditions on u and none on w. The
system however has a solution (w, «) (provided Q and f are smooth enough)
such that the solution of the Dirichlet problem in u also satisfies (through the
choice of the right-hand side) the extra Neumann condition. [

Example 3.8: Decomposition of the plate bending problem.
We now consider the plate bending problem (2.32). In order to make the dual
problem easier to introduce, we first write the energy functional in the form

(3.56) 1 (s Et?

2\12(1 - )>/S;fm(22v): D,v dr—/nfv dz,

where the operator 22 is defined by

(3.57) (D, v).; = 0% 1<i, j
. =27/ T Jz;0x;’ Shis?
and the operator M by
(3.58) M(r) = ( Tt vry (1-v)m
= (1=v)ry vry + 7m0
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for any symmetric tensor 7. Using the same kind of analysis as in the previous
examples we then get the saddie point problem

171201 — 02 - .
inf sup —?:(—LE?;—)‘) / m 1(2) : ;d‘t
T€(L3(Q))] veH3(R) 0

—/r: Dvdz+/f”d73»
ﬂ: =2 Q

where (L2(Q))? is the space of square integrable 2 x 2 symmetric tensors. We
introduce, as dual variables, the bending moments, obtained from the second
derivatives of the primal solution u by

(3.59)

Et3

AT

(3.60) o=

or explicitly

Et® (3211 6211)’

_3_}_1/——

1= T(1-vEy \oz? | O}
Et3 %u  O%u
(3.61) o = 13 et )
Et® 9%u

Jg12 = ———-——12(1+U) __—61181?2 .

The dual problem can then be written as

(3.62) mf % (—}%f—s) / [(T11 + 7'22)2 + 2(1 + U)(T122 - 7'117'22)] d:B
z e}

under the constraint

(3.63) D;; = f.

In (3.63) we denoted by D3 the transpose of the operator D, so that

2
627—11 327'12 %122
it 5 -
Jz? Oz, 0z 0z

(3.64) Diz=

It is possible, as in the previous case, to integrate by parts expression (3.59) and
to obtain formulations in different functional spaces. We shall see an example
of such a procedure in Section IV.5. g
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1.3.3 Duality methods for nonsymmetric bilinear forms

In all previous examples, our variational formulations were based on a mini-
mization problem for a functional and we were led to introduce a genuine saddle
point problem. Even if this classical framework is suitable for a first presen-
tation, it is not the sole possibility and the techniques developed can also be
applied to problems which are not optimization problems. Let us consider for
instance in H§(Q) a continuous and coercive bilinear form a{u,v). If we do
not require a(-,-) to be symmetric, the variational problem

(3.65) a(u,v) = / fvdz,  Yve HY(Q),
Q
has for f € L%(£2) a unique solution u € 7§ (£2) but does not correspond to the

minimization of any functional. To fix ideas, let us suppose that a(u, v) can be
written as

(3.66) a(u,v) = m(grad u, grad v) = / M (grad ) - grad v dz,
Q
where m(-,-) is a continuous bilinear form on (L2(2))2, which, of course,

is nonsymmetric, and M is the associated linear operator from (L?(£2))? into
(L*(2))2. We can now introduce the auxiliary variable,

(3.67) p = M(grad u)

and write problem (3.65) in the form
/B-ggdvdz:/fvd:c,

(3.68) a a

/M‘lp-qdz:/qgr_a_dudx.
Q -7 Q

This can be integrated by parts to yield, as in Example 3.5: p € H(div; ),
u € L) and

/divgvdr+/fv dz =0, Yv € L*(Q),
(3.69) §t @
/1W_1p-qdz+/udiqu$:0, V¢ € H(div; Q).
(3} -7 Q - -
We shall thus consider in Chapter II problems such as (3.69) without making

reference to a saddle point problem. The same remark would apply to the
methods of the following section. O
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1.4 Domain Decomposition Methods, Hybrid Methods

We have shown in Section 1.3 that duality techniques enable us to obtain alternate
variational formulations for some problems. The method that we shall now
describe will yield a new family of variational principles that can be more or
less grouped under the name of hybrid methods. The common point between
the examples that follow is that in all cases the variational principle will depend
explicitly, independently of any discretization, on a partition of the domain Q
into subdomains. To make clearer some of the facts that will appear later, we
first recall a very classical result.

Example 4.1: A transmission problem.
We consider the very classical case in which a domain €2 is split into two
subdomains €2; and {2, by a smooth enough internal boundary S (Figure 1.2).
We consider the case of a Dirich-
let problem with variable coefficient
a(z), a(z) being discontinuous on
S. This classically leads to the vari-
ational problem [where we want to

Figure 1.2
find v € H}(Q)]

/ ay(z) grad u-grad v dz +/ as(z) gradu - gradv dz
(4.1 h fa

:/fv dz, Yv € HH(Q).
o)

Defining u; = u|n, and uy = u|q,, it is standard to interpret (formally) problem
(4.1) in the form

— div(ay(z) grad uy) = f in 4,
(4.2) —~ div(aa(z) grad us) = f in Qo

u1|rnan, =0, Us|rnan, =0,

(43) ) = ug on S, (11%- -} az%
ony ang

=0on S,

where n and n, are obviously the exterior normals to 2; and £, (respectively)
on §. Continuity conditions (4.3) are implicitly contained in the variational
formulation. An important special case is ay(x) = az(z) = 1. We then get the
following result. O
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Proposition 4.1: Let u be solution of the Dirichlet problem

(4.4) { —hu=/,

ujr = 0.

Let the internal boundary S split Q into £2; and Q. Then it is equivalent to
say that v is solution of the problem

—Auy = finQy,
(4.5) —~ Aus = [ in s,

uy|rnaa, =0, uzlrnan, =0,

Uy = ug 0N S,
(4.6) Juy  Gug

a—nz+a—712:00ns

To show this result we would have to define properly the normal derivatives
du;/On; and Guy/On, on S. This would require some regularity on f, for
instance f € L*(2). 0

What we really want to do is to consider a general partition of £

4.7) Q=1]K..

=

i=1

We now write the classical Dirichlet functional of Example 2.1, in the following
apparently strange way.

Example 4.2: A domain decomposition method for Dirichlet problem.
Writing the Dirichlet functional as

.8) J(v) = é{%—/&|g@dv|z dz—/Kl fvds)

and introducing now the functional space

N
4.9) X(Q) = {v] v € L*(Q),v|k, € H'(K)} ~ [[ H'(Ky),

i=1

we can extend J(v) on X (). Moreover H}(Q) is a closed subspace of X ()
and we may consider “v € I3(2)” as a linear constraint on v € X().
This constraint states that on e;; = dK; N GK; we must have, in [11/2(es;),
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u; = uj, where u; = u|k,. We shall therefore, following a now familiar pro-
cedure, impose this constraint through a Lagrange multiplier properly chosen
in H-1/2(e;;). As we shall see in Chapter III, it will be more convenient to
introduce ¢ € H(div;§2) and to use as a multiplier the normal trace of g on
9K;. This leads us to the saddle point problem

(4.10) inf sup / | grad v|? dz— / q-nivds—-/ fvd:r:}
veEX(Q) qu(dwn), 1 8K, K,

for which we have the following optimality conditions: for i = 1,..., N find
u; € H'I(IXV.;) such that,

(4.11) / grad u;-grad v; dz = / fu; d:c—}—/ p-n; v; ds, Yu; € HYK)),
K, K, 8K,

4.12 / -n, u; ds =0, Vg € H(div; ).
( ) Z 8K, -

——z

Condition (4.12) expresses continuity of u at interfaces e;; and condition u|pr =
0. Condition (4.11) shows that w; is solution in K; of a Neumann problem
——Au,- = f in I({,

(4.13) Ou; = p.n on 8K;.
6Tl,’ - —t

Solving this problem obviously requires [make v; = 1 in (4.11)] a compatibility
condition

(4.14) / “ny ds +/ fdz =0,
aK, K,

on every subdomain K;. This condition can also be written

(4.15) /K (divp+ f) dz = 0.

1

From (4.13) we have that the multiplier p-n can be seen as the normal derivative
of u. Indeed, when equilibrium is attained, we have on interfaces Ju;/dn; =
p-n,=-pm = —Ou;/dn; and v; = uj. A suitable lifting of p in each K; in

order to have d1vp + f = 0 can always be done because of (4.14) and (4.15). 00
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Example 4.3: Dual problem of the domain decomposition method.

We now consider the dual problem of the above saddle point formulations. It
will be, as can be expected, very close to the dual problem introduced in Section
1.3 for the Dirichlet problem. Let us first remark that taking the infimum on the
constant part of v € X(Q) on each K; leads to the constraint (4.15) on p.
It is therefore possible to suppose divp + f = 0, as this can be attained by
modifications to p that are internal to K, (that is, not modifying p - n.) and are
transparent to formulation (4.10). Writing T

(4.16) / q-n,vds:/
ok, T K

one gets from (4.10)

N
1
4.17 - d v dz — -grad v; dz ¢
( )qu+f OUEH‘(K.)/IR;{Q/K_IgE v’ de /K'g grad v; m}

From (4.17)
(4.18) grad w; = P(p,),

where P is the projection operator in (L2(K;))? on grad(H!(K;)). We shall
indeed prove in Chapter III that one has

(4.19) (L2())" = {egrad HY(Q)} @ rot HE(Q)}.
From this we can eliminate v, and write the dual problem

(4.20) . Z / |P(q,)P ds.

qEH(dlv Q)
d1v1+f 0

diqudm+/ g -grad v dx,
g k.2

We are therefore back to a variant of (3.35). Indeed, (3.35) shows that the
projection operator P in (4.20) is unnecessary. O

Remark 4.1: One could obtain a variant of the above dual problem, without
constraint (4.15) by using a “least-squares” solution of (4.13) whenever (4.14)
does not hold. This could be done, for inslance by solving on K, in a weak
formulation that we shall not describe,

Ay = Af in K,

o _of .

(421) a—ﬂq&u, = ani on 6[‘,,
Ju; _ -
571—; —2'21. on 6[&,,

for which a solution always exists, defined up to an additive constant. Such a
procedure could be useful for algorithmic purposes since (4.21) is a local simple
problem even if it is a fourth-order problem. O
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Example 4.4: Dual hybrid methods.
We consider now the dual problem (3.35), that is, the complementary energy
principle, that we now pose in H(div;Q),

4.22 f 1 / 2 dz.
(422) EEIII(r(l:liv,n)z n|1| i
divg_+j=0

We can apply the domain decomposition principle to such a problem by intro-
ducing

N
(4.23) Y(Q) = {q] glx. € H(div; K)} ~ [ ] H(div; K).

i=1
As we shall see in Chapter TTI, H(div;Q) is now a closed subspace of Y ()
characterized by

N
4. nlvds=0 Yv e HHQ).
(4.24) ;/@K‘(g n) , e HY(®)

We can then transform (4.22) into the saddle point problem

N
(4.25) inf sup l/ g |? da +/ q.-n,vds
Z{ 2 K. 11 oK, 14 }

gEY (D) ”eHnl(n) 1=1
under the local constraint
(4.26) divg, + f=0onK,.

An advantage of this formulation is that it is easy to find ¢, satisfying (4.20).
We shall meet discretization methods, based on such a principle, under the name
of dual hybrid methods for the treatment of almost any example considered in
this book: Dirichlet problems, elasticity problems, fourth-order problems, etc. [

Example 4.5: The Hellan-Hermann-Johnson method in elasticity.

This is an cxample in which a domain decomposition is introduced, not by
dualizing a continuity condition but by defining a variational formulation able to
bypass this continuity by approximating weak derivatives. We shall first present
formal results and delay a precise presentation of the functional framework.
Our starting point will be the saddle point problem (3.48) and its optimality
conditions (3.49) that we write, in variational form (with functional spaces to
be defined),as

4.27) ! / e
Q

i

114

1
D
dm+——/trg_tr1dz
200 +p) Jo T T

+ / e(u) - rde=0, Vre H(div;),,
O el
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(4.28) / g(v) g de +/ [-vde=0, Yu € (H3(Q))%
Q - [ I

These conditions make sense for a space of ¢ chosen so that div ¢ is well
defined, which implies, as we have seen, contirﬁity of g, at interfaces. On the
other hand v can be taken as completely discontinuous on these same interfaces.
What we now try to do is to split continvity conditions between s, and v. Let
us consider indeed the well-known integration by parts formula,

(4.29) /divg-gdz—l—/g:g(y)dm:/ U,mg~ﬂds+/ onrv-tds
2 - [V an an

Whenever v is a smooth [let us say H!(Q2)] vector, and o, is continuous, we
thus have

N

(4.30) fﬂg(y):SIdz:—Z{L‘divg-gdz+/

=1 3K,

Tpnp N ds} )
so that we can rewrite (4.27) and (4.28) in the following form:

it gtr rdr

1 1
(4.31) —/gD:1Dd1+———————/
BJaT T 200+ p) Ja

N
+;{/Kldivg'udz—/aklrnng-ﬂds}=0, VI,

N
(4.32) Z{/K divg-gdz—/ anny.ads}+/f_.2dz:0, Vo.
o K, aK, Q

Formally this is well defined for g chosen with ¢,; continuous at interfaces
while u - n is continuous. Then the term

N
(4.33) ;{/M Tun v m ds},

therefore depends on the jump of ¢,, on 8K, and (4.32) can be read as
divg + f = 0 in the sense of distributions. We shall consider in Chapter
VI a discretization of problem (4.31) and (4.32) for A = 400 (that is, tr ¢ = 0),
L.e., the case of an incompressible material. As we shall see, our main problem
will then be to preserve symmetry in the discretized problem.

Up to now we considered a purely formal problem. Giving a good frame-
work to (4.31) and (4.32) is a task that requires some care. The presence of
traces, appearing explicitly, in the variational formulation leads one to deal with
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spaces ITV/2(8K;) and H~'/2(8K;) and to subtle considerations about the be-
havior of functions in these pathological spaces. Let us define

@34y = =TJE (K = {2 € (LX),
K,

UiJlK. € HI(I(,'), oij = Uj.'}.

This is a space of smooth tensors and we can consider o, on each interface
¢, = OK; N 9K; (cf. Chapter III). We have one € HY%(e;5) but we do not
have oq¢ € H'Y%(3K;); this would require some continuity at vertices which
cannot, in general, take place due to the change of direction of n and {. We can
nevertheless consider in Y, tensor functions ¢ such that o, is continuous on
ei;. To make (4.33) meaningful, we now have to choose v with v -n continuous
on e;;. We have already seen that for v in H(div; K;) we can define v - n
in H~Y2(8K;). Unfortunately it is not possible to restrict v - nf.,, and get a
result in H~/%(e;;): something is lost in corners. In reality we only need an
“infinitesimal” amount of extra smoothness and this will lead us to look for v
in (LP(€2))? N H(div; Q) for p > 2. This will cause some problems in applying
the theory of Chapter II and existence of a solution will have to be deduced
through special considerations. O

1.5 Augmented Variational Formulations

We shall present in this section other possible ways of defining variational
principles associated with saddle point problems. The methods that we shall
consider are known as Galerkin least-squares methods and were introduced by
FRANCA-HUGHES [A]. To fix the ideas, let us consider the simplest cases of
Examples 3.4 and 3.5, and in particular the saddle point formulations (3.32) and
(3.39), respectively. In both cases the Euler equations are given by (3.34). It is
clear that we can always add (or substract) the square of one of these equations
to the functional without changing the min-max point. For instance, we can
take (3.32) and add to it the square of the first equation of (3.34) to obtain

inf sup —%/ |q|2dz‘—/fvda:+/q.g@dvd9:
veHL() ge(L2(O))? Q- Q o

+%/ |g—g@dvl2dz},
i)

where @ can be chosen arbitrarily provided 0 < o < 1. Similarly one can add,
instead, the square of the second equation of (3.34) to the functional (3.39) to

get

.1)

inf sup %/ \q\zdz+/fvdm+/ vdivgdz
g€ H(div, Q1) veL2(Q) [ Q 0 -

(5.2)
+ g/ﬂ(divﬁf)?dx},
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where 8 > 0 is arbitrary.

A third (reasonable) possibility is available: one might take (3.39), add to

it the square of the second equation of (3.34) and substract the square of the
first equation of (3.34):

inf sup l/ 2dr+/ d / .
geH(div ) UEH‘;(Q){Z Q|Q| nfv z+ nvd1v2d;c

vt flngrrrae—s [t
]

Note thaf we had to change the regularity requirements on v in order to make
the funct%onal meaningful. Note as well that we could obtain (5.3) from (5.1) by
substracting (8/2) ||div g + f”ZL;(m (and increasing the regularity requirements

on g)_ and by changing the sign. An easy computation shows that the Euler
equations of (5.1) are

/Q-gdf”'*"/fvdff_/l?'g@dvdm—/q-ggdudz
[¢] Q a~ o

(5.4)
— a‘/n(g—g@d u) - (¢g—gradv)dz = 0, ¥(g,v) € (L*(Q))2x Hy ()
which are equivalent to (3.34) for a # 1. For & = 1, we just have

/&;g_rgdu-g@dvd:c:/fvdz, VUEH(%(Q),
o)

as should be expected since (5.1) reduces to (3.30} in this case. Similarly, (5.2)

gives
fg-g_dfc-l-/fvdz+/udivq d:c+/vdiv1)dm
Q ol Q - I =

(5.5)
+ ﬁ/ﬂ(divgw)dividz =0, W(gv) € H(div; Q)x L}(Q),

which are again equivalent to (3.34). Finally, (5.3) gives

/B.gdq;+/fvdz+/udivq dz+/vdivpdz
o} Q Q - o -

+ ﬁL(diVQ—i—f)dngdm — a/ (p—gradu)-(g—grad v)dz = 0,
O q

V(g,v) € H(div;2)x H}(Q).
Setting now ¢ = divp+ f and ¢ = p — grad u, we may rewrite (5.6) as

(5.6)

1— . ; _ .
- ( a)/ng gdaf+ﬁ/ﬂ¢dxvgdm—0, Yq € H(div,Q),

G/Q-g@dvdw/wvdx:o, Yv € Hy(Q).
Q Q
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But taking ¢ = gradv, with v € H*(Q2) N Hg(Q), we get from (5.7)

(5.8) —(1—a)/ﬂx/;vd:z+aﬂ/ﬂ¢Avda::0, Vv € H2(Q) N Hy ().

(For o = 1, we have —Au = f again. In conclusion, (5.6) is equivalent to
(3.34).

Remark 5.1: We obtained in this way three more equivalent variational formu-
lations for the original problem (3.30). Note however that the Euler equations
(3.34) constitute a system of two first-order equations in the unknowns u and p;
on the contrary (5.4) is of second order in u and first order in p, whereas (5.5)
1s of first order in u and second order in p and finally (5.6) is of second order
in both variables. O -

Remark 5.2: We presented here, on an example, a quite general idea which
was presented in a general setting in FRANCA-HUGHES [A] and FRANCA
[A]. Some examples of possible uses of these ideas will be developed in the
following chapters. O

Remark 5.3: In the example presented above, Euler equations (3.34) were a
system of first-order equations. This is not the case of Stokes problem (3.14),
for which one of the equations is already second order. Applying the same
procedure would lead to a fourth-order problem in the variable u which would
lead to undesirable complications. Indeed the analogue of (5.1) would here be
obtained from (3.10) as follows:

inf sup u/ ]g(v)]zdz—/fgdz-—/ gdivvdz
vE(HE())? g€L2() Ja ~ Qo a

(5.9)
- %/ |- Au-+grad p— f[*dz,
Q

which would force us to use a very regular approximation for the variable u.
A possible one could be to employ this method in connection with a domain
decomposition,  being partitioned into subdomains as in (4.7) and to change
the last integral into

N
5.10 —¢ — Au dp — fl*dz
(5.10) 2;/}('1 u+ gradp — f]

where & will have to be suitably scaled. This is what has been done by
HUGHES-FRANCA [A]. We shall come back to this in Chapter VI. O
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Remark 5.4: Finally, another variant of the general idea developed above has
been considered in DOUGLAS-WANG [A]. The formulation cannot in this case
be written as a modified Lagrangian but must be introduced as a modification
of Euler equations of (5.4). Indeed let us write instead of (5.4)

(5.11) /E-gdz—f-/fvd:c—/p-g@dvdz—/q-g_r_a_dudr
Q n Q” Q-
+ a/(g—gr_ad u)-(g+gradv)de = 0, V(g,v) € (L*(Q))*x H}(Q).
o 4

This formulation cannot be obtained from a Lagrangian. It can easily be seen
that it remains valid for o > 0 arbitrary. Indeed (5.11) can also be writen as
(5.12)

(1+a) /Q(E—g@du) gde =0, Vg € (L*(Q))?,

a/g@d u-gr_advdz—}-(l—a)/p-g[gdvdm—/fv dz =0, YveH(Q)
Q aQ )

and this is equivalent to (3.34) for any « > 0.0

To end this chapter, we present a last type of variational formulation yield-
ing weaker solutions than the formulations presented up to now.

1.6 Transposition Methods

Although we shall not consider in this book discretization methods directly
based on transposition methods, some of the properties of these methods will be
a good guide for understanding weak formulations. We present here the simplest
possible case of a transposed problem and we refer to LIONS-MAGENES [A]
for a complete discussion. Our starting point to obtain a weak formulation
of a Dirichlet problem will be, paradoxically, a regularity result (AGMON-
DOUGLIS-NIRENBERG [A], AGMON [A], NECAS [A]). It is indeed well
known that for f € L*(2) and when the boundary 8Q is smooth enough, the
solution of the problem

—Au=f,
- (s
u € Hy(9),
satisfies a regularity property
6.2) u € HY Q)N HQ),

and then an a priori bound

(6.3) llull2 < ¢ |flo-
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One therefore has defined an isomorphism from H2(Q) N HL(Q) to LH(Q)
and it is then immediate that the transpose of this isomorphism is also an iso-
morphism from L?($2) into the dual space (2(Q) N HY(S))' . Thus there
exists a unique solution to problem

(6.4) - /nu Abdr=L(¢), VéeIAQ)NI, ue L* Q)

for any continuous linear form L(-) on I72(Q) N H(Q). In particular, for
felL*Q)and g€ I ~Y/% the problem

(6.5)
—/ﬂu Apdz = /ﬂm dz— Fgg—‘gds, Vo € MA(Q)HL(Q), v e L*(Q),
has a unique solution satisfying in the sense of distributions,
(6.6) —Hu=f
and in a weak sense (LIONS-MAGENES [AD
6.7) ule = g.

One has solved a weak form of the Dirichlet problem with boundary values in
H-Y%(T). In Example 3.5 we also had a weak form but boundary values had
to be chosen in H'/2(T) and we were implicitly brought back to the strong
problem.

It is also possible to define in I ~3/2(T) the trace of the “normal derivative”
of w. Indeed for every ¢ € H?/2(T") we can solve the problem:find & € H*(2)
such that,

—A®=0inQ,
(6.8) {

Sl = ¢

The normal derivative P = 0u/dn of u will then be the mapping ¢ — (P, ¢)
defined as

(6.9) (P,¢):—Lf®dr+ﬁg%§ds

We shall have in chapter V to consider weak traces of the solution of a Dirichlet
problem on interfaces between subdomains. Although we shall not make an
explicit use of transposition, the presence of weak discrete norms in the error
estimates indicates that we could then indeed get some insight from such a
formulation.
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1.7  Bibliographical Remarks

The purpose of this Chapter was to present examples which will be used later
as a stapdmg ground for our development. It was not possible in such a context
to consider every case. We already referred the reader to DAUTRAY-LIONS
[A] where the.mathematical analysis of the problem selected, and many others
can be fqund in an unified setting. We also refer to more engineering orienleci
presentations such as BATHE [A], HUGHES [A], KIKUCHI-ODEN [A], and

ZIENKIEWICZ [A]. In particular, nonlinea i
. ‘ . 2 r problems and th
described in these references. P el treatment ax¢



II

Approximation of
Saddle Point Problems

This chapter is in a sense the kernel of the book. It sets a general framework in
which mixed and hybrid finite element methods can be studied. Even if some
applications will require variations of the general results, these could not be
understood without the basic notions introduced here. Qur first concern will be
existence and uniqueness of solutions. We first consider in Section II.1.1 the
simple case of a saddle point problem corresponding to the minimization of a
linearly constrained quadratic functional. This case is extended in Section 11.1.2
to a more general case. The matter of approximating the solution will then be
considered under various (but classical) assumptions. Finally, we shall deal with
numerical properties of the discretized problems and practical computational
facts.

1.1 Existence and Uniqueness of Solutions

In the previous chapter, we introduced a large number of saddle point problems
or generalizations of such problems. In most cases, the question of existence
and uniqueness of solutions was left aside. We now introduce an abstract frame
that is sufficiently general to cover all our needs. In order to make our pre-
sentation easier, we shall first consider the simpler case corresponding (under
symmetry assumptions) to the minimization of a quadratic functional under lin-
ear constraints. We shall follow essentially the analysis of BREZZI [A] and
FORTIN [C]. We also refer the reader to the paper of BABUSKA [A] which
was a fundamental step towards understanding mixed methods, and to the recent
work of ROBERTS-THOMAS [A] for another general presentation of mixed
methods.
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I1.1.1 Quadratic problems under linear constraints

Let V be some Hilbert space for the norm || -||v and the scalar product ((-,-))v .
We consider a continuous bilinear form on V' x V (not being necessarily sym-
metric) and therefore satisfying

(L1 la(u, v)] < flall [lellv {lo]lv-
This bilinear form thus defines a linear continuous operator A : V — V'’ by

(1.2) {Au,v)vixy = a(u,v), YvoeV, YueV.

Let us choose another Hilbert space @), with norm || -|| and scalar product
((,-))q, and a continuous bilinear form b(v,¢) on V x @ with

(1.3) (5w, ) < 1Bl Ivllv [lelle-

Again, we can introduce a linear operator B : V — (', and its transpose
B! : Q — V', defined by,

(14 (Bv,g)grxq = (v, B'g)vxv' = b(v,q), Vv €V, Vg € Q.

As we shall see, the properties of operator B are fundamental in the study
of the problem; we consider in particular the range of B denoted Im B and its

kernel KerB. Let f € V', g € Q' be given; we want to find u € V, p € Q
solutions of

(1.5) {a(u,v) +b(v,p) = (f,v)vixv, Yv eV,
b(u,q) = {9,9)Q'xQ; Vg € Q.

This can also be written as

(1.6) {A" +B'p=f inV’,
Bu=g in@Q.

We now want to find conditions implying existence and possibly uniqueness of
solutions to this problem. If the bilinear form a(u,v) is symmetric, equations
(1.5) are the optimality conditions of the saddle point problem

1.7 inf sup La(v, b - - ‘

vEqugz (U U)+ (U>Q) (f,v>V xV <g)Q>Q xQ-
This is. the reason for the title of this chapter, in spite of the fact that we deal in
fact with a more gencral case. We shall first give an existence and uniqueness
result for a problem which is strongly related to (1.5). This result is a direct

consequence of the classical Lax-Milgram theorem (CIARLET [A], LIONS
[AD.



38 Approximation of Saddle Point Problems §IL.1

Proposition 1.1: Let ¢ € Im B and let the bilinear form a(-,-) be coercive on
Ker B, that is, there exists ag such that

(1.8) a(vo,vo) > ao [lvolly;,  Vwo € Ker B.

Then there exists a unique u € V solution of

1.9 a(u,vo) = (f,vo)v/xv, Yvo € Ker B,
and
(1.10) Bu=g.

Proof: The condition g € Im B is of course necessary. Let us suppose it is
satisfied; one can then find v, € V with Bu, = g. One then writes, in a
classical way, the first equation of (1.5) in the form

(1.11) a(uo, UQ) = (f, v())lev — a(ug,vo), Yvog € Ker B, ug € Ker B,
by setting u = ug + u, and taking v = vy € Ker B. A sufficient condition for
the existence and uniqueness of ug is therefore the coercivity condition (1.8).
There remains to check that u = ug + u, does not depend on the choice of u,.
Indeed if we had two solutions of (1.9) and (1.10) say u; and uy , we would
have u; —uy € Ker 3 and from (1.9)

a(uy — ug,v0) =0, Yvg € Ker B,

and this implies u; — up = 0 by condition (1.8). 0

Remark 1.1: It is clear that, if (1.5) has a solution (u,p), then u will be a
solution of (1.9)-(1.10). Then Proposition 1.1 implies that the first component
u of the solution (u,p) of (1.5) (if it exists) is unique. Moreover we note that
by Proposition 1.1 we have

(112) lull < Tagll+ {1171l + Yl gl 0
[&4¢]

We must therefore bound ||ug]| to get a proper a priori bound on u. O

Remark 1.2: The coercivity of a(-,-) on Ker B may hold while there is no
coercivity on V. We shall meet many examples of this situation. O
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Remark 1.3: If the bilinear form a(-,-) is symmetric, (1.9) and (1.10) are the
optimality conditions of the minimization problem

(1.13) inf -;-a(v,v)— {(f,v}vixy.

Bu=g

The variable p will be the Lagrange multiplier associated with the constraint
Bu=yg.0

We now turn to the problem of finding p. For this, we shall have to make
an additional assumption on the operator B. Precisely the range of B, Im B,
will have to be closed in @’. This will hold, in particular, in the frequently
encountered cases where B is surjective or when Im B is of finite codimension.

This assumption (that Im B is closed) enables us to extend to the infinite-
dimensional case, properties that are well-known to hold for matrices. We thus
recall the following classical result of functional analysis (cf YOSIDA [A] for
instance).

Proposition 1.2: The following statements are equivalent:

— Im B is closed in @', that is for any sequence vg such that Bv; converges
in ', there exists v € V with limy Bv, = Bu.

— Im B? is closed in V’, that is for any scquence g such that B'q; converges
in V', there exists ¢ € Q with limy B'q, = Bq.

— (KerB)® = {v' € V/|(¢', v}vixv =0, Yv € Ker B} = Im B".

— (KerB")? = {¢' € @'|{¢', ¢)g'xo = 0, Vg € Ker B'} = Im B.

— There exists ko > 0 such that for any g € Im B, there exists v, € V with
Bug =g and [Jvgllv < 1/kallgliqr-

— There exists ko > 0 such that for any f € Im B, there exists gy € ) with
Blg; = f and llgsllq < 1/kol| fllv-. O

If one of the above properties is satisfied, one can say that B admits a
contimuous lifting from Q' to V and B* a continuous lifting from V' to ). We

have used the dual norms, || - ||v+ and || - ||, defined by
g,9 9,49
@y = sup 2L g = anp 22
vev |[vllv e€q llalle

where, as in the rest of the book, we assumed implicitely that sup, ¢(z) has to
be taken for ||z|] # 0 if ¢(z) contains ||z|| in the denominator. The same will
be true for inf, ¢(z). The last two statements of Proposition 1.2 can then be
written as

b(v,q)
1.15 >k f =k v B,
(L19) sy it 2 ko[t o+ soll] = bolbllyyean, Vo
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and

p 2. a) :
9 5 £ ~k o Ygeq,
(16 3 vev Nollv O[qoellgeml e + qo”] ollelle/ xer 7

by taking into account the fact that v, can be chosen in (Ker B)* and g; in
(Ker B)*, respectively. We can summarize by saying that operators with a
closed range have the well-known properties of operators in finite-dimensional
spaces (for which the range is always trivially closed). We can now proceed to
study the full problem (1.5).

Proposition 1.3: Let ¢ € Im B and let u be the solution of problem (1.9) and
(1.10). If Im B is closed in @', there exists p € Q' such that (u, p) is solution
of problem (1.5). Moreover, we have

(117) e < =0l + - (1+ 20 gl

llel| IIGH llall
(118)  lpllarerse < 5o (14 ) fllve 4+ (1470 lllla
Proof: Indeed, let us consider in V', the linear form

(119) L(v) = (fxv>V'XV - a(u,v).

By (1.9) we have L(vo) = 0, for any vo € Ker B. By Proposition 1.2, we know
that L € Im B* = (Ker B)°, and there exists p € Q so that

(1.20) L(v) = b(v,p), Yv eV,

1 1
120 lellosxene < pltEllv < g (il ully + D5l ).
From Proposition 1.2, we can also choose u, in Proposition 1.1 to satisfy
1
(1.22) llugllv < -llgllqr-
0

Thus (1.17) follows from (1.12) and (1.22) whereas (1.18) is readily deduced
from (1.21) and (1.17). Finally, from (1.20) and (1.19) we have

(1.23) a(u,v) + b(v,p} = {f,v), vveV. O
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Remark 1.4: For finite-dimensional problems we shall always have existence
of a solution (u,p) of (1.5) provided we have the existence of u in (1.9) and
(1.10).0

Remark 1.5: If Im B is of finite codimension (and thus closed) it is possible
to build explicitly the extension of L(-). O

Remark 1.6: It is clear (from the first equation of(1.6) for instance) that p is
defined up to an arbitrary element of Ker Bt. We then have uniqueness of p if
and only if B is surjective. 0

The proof of Proposition 1.1 shows that condition (1.8) is in fact too strong.
What we really need is the condition that the restriction of A to Ker B be
invertible on Ker B. Equation (1.11) then defines ug in a unique way. This
condition is equivalent to the condition that Ag, the restriction of A to Ker B, is
bijective and by Proposition 1.2 applied to A; this is equivalent to the conditions

(1.24) inf sup —(M > ap,
voeKer B woeKer B |[toll {|voll ~
which impliesKer A] = {0} that is, Ag is surjective, and
(1.25) inf sup M > ap,
uoeKer B voeKer s |[o]] [|voll
which implies Ker Ao = {0} that is, Ao is injective. It must be pointed out that

(1.25) for instance is not implied by a condition of the form

a(uyv)
inf sup ———= >
wev vev Tullloll =
which would mean A to be injective on V. The same remark holds for (1.24).

For example, we shall encounter in practice problems of the form

A B} C} U, I
(1.26) B, 0 cillu]|=|FR
Cy C3 0 P G

We would then have to check that

A B
B 0

is invertible on Ker C = Ker{C, C,}. It will not be sufficient to prove invert-
ibility on V' which is a problem of the type considered above and is in general
much simpler.

We can now summarize the above results in the following.
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Theorem 1.1: Let a(-,-) be a continuous linear form on V x V, let b(-,) be a
continuous linear form on V x Q. Let us suppose that the range of the operator
B associated to b(-,-) is closed in (', that is, there exists kg > 0 such that

b(v,q)
(1.27 su L >k .
) uE\B “U”V = R0 ”q“Q/ Ker B!

If moreover a(-,-) is invertible on Ker B, that is, there exists oy > 0, such that

inf sup __a{uo,v0) > o,
(1.28) uoeKer B wvoeKer B |[tollv [|vollv
inf sup M > aq,

voeKerB uoeKer B |[uollv [lvo|lv

then there exists a solution (u, p) to problem (1.5) for any f € V' and for any
g € Im B. The first component u is unique and p is defined up to an element
of Ker B*. Moreover one has the bounds

1.29 < , . el ,
(1.29) |Jully < C,!0||f||v + ( o + 1) kONQHQ ;

1
(130 lollgyseem < 7= (14 L) i + 05 (14 120 g, m

(&40]

Remark 1.7: Conditions (1.27)-(1.28) of the theorem above are not only suf-
ficient but necessary for the existence of a solution to the problem considered
for all g € Im B and for all f € V' (BREZZ1 [A]). O

To fix ideas, we shall apply the results just obtained to some of the examples
introduced in Chapter I.

Example 1.1: The Stokes problem.

Let us go back to Example 3.1 of Chapter 1. We look for u € (H}(2))? =
V,p € L*(Q) = Q, solutions of

Q;I/E(H)ii(y)dr—/Pdivzzd:vzfyidm, Yv eV,
- 0 a

(1.31)
—/qdivydm:(), Yq € Q.
Q

Here we have g = 0. Moreover the bilinear form a(u,v) = 2u [, £(u):e(v) dx

is coercive on V' (DUVAUT-LIONS [A], TEMAM [A]). The existence of u in
(2.27) of chapter I is therefore established.
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On the other hand, we have

b(y,q):—/qdivgdw
Q

and B is the divergence operator from (H$($2))? into L%(2). One can show
(LADYZIENSKAYA [A], TEMAM [A]) that

ImB = {QI/ﬂqdr =0},

and this subspace of L2(§) is evidently closed (being of codimension one). We
then have the existence of a pressure p defined up to an additive constant, and
we can write

Ker B* = Ker(—grad) = {g| ¢ is constant on Q}. 00

Example 1.2: Mixed formulation of the Dirichlet problem

We consider here the case of Example 3.5 of Chapter 1. We look for p €
H(div; Q) =V, u € L*(Q) = Q such that, f being given in L?(Q),

/E-gdz—%—/udivgdzzﬂ, Yq € H(div; Q),
(1.32) a @
/(div2+ flvde =0, VveL*Q).
19

There is a reversal of symbols with respect to the abstract result: this is probably
the major difficulty of this example. Here B is the divergence operator from
H(div; ) into L%(2) and it is surjective. We have

a(p, q) =/£-zdr,
N

and this bilinear form is coercive on Ker B, even if it is not coercive on
H(div; ), taking into account the definition (3.37) of chapter I of the norm in
H(div;Q).0

Example 1.3: Domain decomposition for the Dirichlet problem.

Refering to Example 4.2 of Chapter [, we have to solve the following problem:
find v € X(Q) =V, p € H(div; Q) = Q, solutions of

/g@du,-gg_a_dvidx-/ p-n v;do= f v dz,
K. ak,” K,

(1.33) Yu; € HY(K), YK,

Z/ ¢-nudo=0 Vg€ H(div;Q)
~Jok, T =
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We thus have (v, q) = 3, faK, ¢ 71, v do, and the operator B associates to
v € X () its jumps v; — v; on the interfaces e;; = 8K, N JK;. The kernel
of B is nothing but H() and the problem corresponding to (1.9) and (1.10)
is the standard Dirichlet problem. To prove the existence of p we shall have
to prove that Im B is closed in (H(div;Q)) and we shall have to characterize
Ker B*. This will be done in Chapter 1V. 00

We shall of course come back to these problems when studying more
precisely mixed and hybrid methods. Checking the closedness of Im B, even
if existence proofs can be obtained through other considerations, is a crucial
step ensuring that we have a well-posed problem and that we are working with
the right functional spaces. This last fact is essential to obtain “natural” error
estimates.

I1.1.2 Extensions of existence and uniqueness results

Some applications, in particular nearly incompressible material (Section VI.6)
will require a more general formulation than problem (1.5). Although the first
generalization introduced will appear to be simple, we shall see that its analysis
is rather more intricate.

Let us then introduce a new bilinear form c(-,-) on @ x @ on which we

suppose continuity and positivity,

(1.34) le(p, )1 < Hlell llplle llalle, VP, €@,

(1.35) c(g,9) > 0, Vg€ Q,

and let us denote by C' : @ — @' the operator associated with ¢(-, -).

We now consider the following extension of problem (1.5): find u € V
and p € @ such that

(1.36) {“(“’”) +b(v,p) = ([, v)vixve,  YwEV,

b(x,q) — c(p, q) = (9,9} @, Vg e Q.

Whenever a(-,-) and ¢(-,-) are symmetric, this problem corresponds to the
saddle point problem

inf sup %a(v,v) + b(v,q) - %c(q,q) —{f,v)+ (9,9
veV g¢eQ

and it is no longer equivalent to a minimization problera on u.

We now want to look for conditions on a, b, and ¢ ensuring the existence
and uniqueness of a solution to (1.36). We also want to find bounds on » and
p and we would like these bounds to be independent of the properties of (-, -).
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Let us first consider a special case. We assume that ¢(-, -) is coercive on
@, that is,

(1.37) 3y > 0 such that «(g,q) > 7 llally, Ve €Q
and that a(+,-) is also coercive on V:
(1.38) 3o > 0 such that a(v,v) > « ||v||%, Yv € V.

Then we have the following proposition.

Proposition 1.4: If (1.37) and (1.38) hold, then for every f € V' and g € Q'
problem (1.36) has a unique solution (u, p). Moreover we have:

o v 2 1 2 1 5
1- - 2 - hnaun I - i
(1.39) 2“"“v + 2”1?”@ < zanf“v + 27”9“Q

The proof is elementary. O

The estimate (1.39) is unsatisfactory. Actually, in many applications, we
will deal with a bilinear form (-, -) defined by

(1.40) e(p, q) = M(p, 0))q, A>0,

and we would like to get estimates that provide uniform bounds on the solution
for A small (say 0 < A < 1). Clearly if ¢(-,-) has the form (1.40), one has
¥ = X in (1.37) and the bound (1.39) explodes for vanishing A. This fact
has practical implications, as we shall see, on the numerical approximations of
some problems, for instance nearly incompressible materials. On the other hand
Proposition 1.4 makes no assumptions on b(-,-) [except the usual (1.3)] and it
is then quite natural for the choice ¢ = 0 to be forbidden. However in Section
I1.1.2 we were able to get proper bounds for ¢ = 0 by using (1.27). Hence we
now try to reduce the assumptions on ¢ = 0 and to add the assumption (1.27)
on b(-,).

We therefore assume that a(-, -) satisfies (1.1), (1.28), and
(1.41) a(v,v) > 0, YveV.

We also assume that b(-, -) satisfies (1.3) and (1.27) and c(-, ) satisfies (1.34)
and (1.35). For the sake of simplicity we also assume that ¢ is symmetric, that
is, ¢(p,q) = c(q,p) for all p and ¢ in Q. It is easy to check that (1.35), and the
symmetry imply

(1.42) (c(p,9))* < (P, p))(e(g,9))

[consider the polynomial P() = c(p + tg,p + tg) and remark that P(t) >
0, ¥t € IR. This implies (1.42).]
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Now consider, for every € > 0, the “regularized” problem: find v, € V
and p. € @ such that

(143) E((UE,U))V + a(ug,v) + b(v>p5) = (f,‘U), Yv € V;

(1.44) b(ue,q) — e((pe,9))q — c(pe,9) = {9,9), Vg€ Q.

Proposition 1.4 ensures existence and uniqueness of the solution of (1.43) and
(1.44). If we can bound u, and p, independently of €, a simple limiting argument
will allow us to conclude. As a first step we take v = u, in (1.43) and ¢ = p,
in (1.44) and we subtract the two equations to get

(1.45) 5““6“%/ +e ”pe”2Q + a(ue, ue) + e(pe, pe) = {f,ue) — (9, Pe)-

From now on, we drop, for the sake of brevity, the subscript ¢ and we write
(1.46) u =g+ i, p=po+p

with ug € Ker B, % € (Ker B)*, pg € Ker B, p € (Ker B*)L. The first step
is to bound ¢ and p by means of (1.27). We have

] alu,v) + €((u,))v = {£,)
kollpllg < 32‘3{ ol }

< {Ullall + e)lluflv +[1fllv-},
and, using Proposition 1.2 (in particular (1.15)),
o(p, ) +£((p, ))q — (9,9) }
llalie
< {Uelle(z,2))* + ligller +ellplla

(1.47)

kollally < sup {
(1.48) 1€Q

where (1.42) and (1.34) were also used. Next we bound uo in terms of @, using
(1.28):

T e
(1.49) voeKern |I0ollv woeKern llvollv

< Hlell lally + 1 llve + ellally + elluollv
Collecting (1.48) and (1.49) we have

(1.50) [[ully < 2= {(llel cp,p) /- +lpllq-+ lgllg (144 €) Wl
0 (874 & [ 44) £

On the other hand, if ¢ € Im B we have from (1.45)

(1.51) ellplll + a(u, v) +e(p,p) < [|fllv: lully +llgller 1Blle
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and using (1.47)

(1.52) ellplly + alu,u) + c(p, p)

< (v + 1o LY e+ s ol

From (1.52) and (1.50) we have

(1.53)  ellplly + a(u,w) + c(p,p) < K((llell e(p,p)"/? + 1 + ellpll),

where K is easily bounded by [{f{f, ligl}, {lal, 1/ko, 1/0.

From (1.53) we deduce that ¢(p,p) and /€||p|| are uniformly bounded.
Then (1.48) gives the bound on 1, (1.49) gives the bound on up and (1.47)
gives the bound on p. We still have to bound pg. Equation (1.44) implies

(1.54) e((po,9))q@ + ¢(po,q) = —c(B,q), Vg € KerB".

In many particular cases, (1.54) provides a bound for pg in a very natural way.
Let us consider the following general assumption.

There exists a 7g > 0 such that for every 5 € (Ker B*)* and for
(1.55)  every ¢ > 0 the solution pg € Ker B* of equation (1.54) is bounded
by 70 [lpolle < [I7lle-

If assumption (1.55) is satisfied, we obtain that both [juf| and ||p(| and bounded

uniformly in ¢ by a constant depending on || f||, llgl], llall, llcll, 1/ ko, 1/aq, %
This will imply existence and a priori bounds for the solution of (1.36). Before

a deeper analysis of (1.55) let us state the result which has been obtained.

Theorem 1.2. Assume that a(-,-), b(-,-) and ¢(-, -) are continuous bilinear forms
onV xVonV x(Q,and on Q x @ respectively. Assume further that a(-, )
is positive semidefinite [i.e. (1.41)] and that ¢(-,) is positive semidefinite and
symmetric. Finally assume that (1.27), (1.28), and (1.55) are satisfied. Then for
every f € V' and every g € Im B problem (1.36) has a solution (u, p), which
is unique in V' x Q/M, where

(1.56) M = Ker B* nKer C.
Moreover we have the bound

(1.57) lullv + NPl ker 5t < K(I1fllve +llgller)

with K a nonlinear function of ||a||, ||¢]], 1/ a0, 1/ko, 1/70 which is bounded
on bounded subsets. O
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Remark 1.8: Theorem 1.2 assumes that g € Im B. Actually a careful look at

its proof shows that the crucial steps (1.51)-(1.53) can be performed under the
more general assumptions,

g =§+go,
(1.58) gelmB,
3o > 0 such that for all ¢ € @, |{g0,¢})| < & (c(q,q)l’z)‘

This in particular will hold if g has the form

(1.59) {9,9) = (3. 9) + c(q0,9)

with g € Im B and ¢o € @, provided (-, -) satisfies the assumptions of Theorem
1.2 and in particular (1.42). In this case, we clearly have ¢ = (¢(go,g0)"/?).

If ¢ has the form (1.59), equation (1.54) also keeps the same form, and
condition (1.55) must now be written in the slightly stronger form

There exists a 9 > 0 such that for every p € @ and for every
(1.60) € > 0 the solution py € Ker Bt of equation (1.54) is bounded by
Tollpolle < lipllq- O

Let us now discuss condition (1.55) in more detail, trying to find particular
instances where it stands.

Case 1: ¢(p,q) = AM{(p,¢))g, (A 2 0).
Then (1.54) reduces to
(1.61) (e + M {(po,q)) = 0, Yq € Ker B;

hence pp = 0 and (1.55) is trivially satisfied. The result extends if g has the
form (1.59), but py is not bounded independently of A for a general g. 0

Case 2: c¢(p,q) = A ¢(p, q), where &(-, ) is a bilinear form on Q x Q satisfying

(162) {é(p, 0 < el lelle Nalle, — Vpg€ @

g, 0) 2 llally,  VeeQ.

Then (1.55) is satisfied with yo = 7/[|Z[| and hence independent of A for g €
Im B or ¢ satisfying (1.59). 00
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Case 3: Ker B = {0}.

Then (1.55) is trivial. 0

Case 4: c(-,-) is coercive on Ker B*.

(1.63) c(g0,90) = 71 llgolld, Vg9 € Ker B'.

Then (1.55) holds with 76 = v1/||c||. In this case the assumption ¢ € Im B
becomes unnecessary. 0

An assumption weaker then (1.63), in the style of (1.28), still ensuring
¢ to be invertible in Ker B' would still be enough to get (1.55) and to avoid
g € ImB.

Remark 1.9: One often has (like in Cases 1 and 2 above), Ker C = {0}, so
that the space M appearing in (1.56) actually reduces to {0} and the solution
(u, p) is unique. O

Remark 1.10: A closer look to the proof of Theorem 1.2 shows that, if one
assumes a(-, -) to be coercive in V, that is, (1.38), then {Ju||s is bounded directly
by (a(u,u))'/? and (1.48) is useless. Hence the symmetry of ¢(-,-) becomes
unnecessary if (1.38) holds. 00

Remark 1.11: The case ¢ = A] was considered by ARNOLD [A]. O

Remark 1.12: Assuming that Ker B' = {0} and (1.28), a continuity argument
shows that (1.36) has a unique solution whenever c(+, -) is small enough, without
any further assumption. O

Remark 1.13: Another case strongly related to Theorem 1.2 will occur in
applications. (cf. Section VIL3). Let us consider a bilinear form c, (-, -) defined
on a Hilbert space W «— @ and satisfying

ex(pq) <co Alpllw llgllw,  VYp,geW
axlp,p) 2 Ay llplliv,  Vge W

We now consider a problem of the form

a(uyv)‘*'b(U,P): (f)U>V')(V) VUEV)

1.64) {
( b(ulq)-_ct\(plq) = <91,(I)Q’XQ+(92,(I)W'><W, qu w.
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We now suppose, for simplicity, a(-, -) to be coercive on V" and (-, -) continuous
on V x @ (hence on V x W) with the range of B closed in ('. We suppose in
(1.64) that g, € Im B. It is then obvious that we get, instead of (1.39),

(1.65) adfullly +Alplliy < [fllvellully +lgullerIpllos ker 5t + llgallw- (Ipllw,

while one still has kol|p|lq; ker5¢ < llal] llully + |/]jv+. Regrouping the terms
onc gets the estimate

(1.66) {ull} + Ul kerne + Miplliy < e (I + ol + %llgzl\z )-

If we have g5 = g5(X) with ({lg2(M)||3, /) bounded as A — 0, the solution will
become unbounded in W but will remain bounded in @/ Ker B' and will con-
verge to the solution of problem (1.5). We shall come back to this convergence
property in Section 11.3. 0

Finally, we must state here another type of generalization considered in
NICOLAIDES [A] and BERNARDI-CANUTO-MADAY [A]. They consider a
problem of type (1.36) but implying two bilinear forms &(-,-) and &3(-,-) on
V x @, that is,

(1.67) {a(u’v) +bi(v,p) = {f,v)yixv, VvEV,

bz(u"I)"C(P:(I): (Q,Q)Q’xQ, V(IGQ

In fact, the above references only deal with the case C = 0. Conditions for
existence of a solution are now that both by(+,-) and ba(-,-) should satisfy an
inf-sup condition of type (1.27) and that a(w, v) should satisfy an invertibility
condition from Ker Bz on (Ker B;)’, that is,

u
(1.68) inf sup M—- > o,
upeKerB, voeKerB, “uOHVH”O”V

(1.69) inf sup M > ag.
voeKer By uoeKer &, |[Uallv||vollv

This condition is in general rather hard to check. We refer to BERNARDI-
CANUTO-MADAY [A] for details and an application to a problem arising
from spectral methods.

»
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I1.2 Approximation of the Problem

11.2.1 Basic results

We now turn to the approximation of problem (1.5). To make this presentation
clearer, we shall first place ourselves in the simplest possible framework. Ex-
tensions of the theory to more complex cases will be introduced Iater. We again
follow BREZZI [A] and FORTIN [C] while giving a more general presentation.
We suppose known the standard approximation results such as can be found in
CIARLET [A] or BABUSKA [B].

Let then V,, < V and @, — @ be finite-dimensional subspaces of V' and
Q, respectively. The index h will eventually refer to a mesh from which these
approximations are derived. We thus look for a couple {us,pn} in V, x Qx
solution of

(2.1) {“(“h’”h) +b(vn,pn) = (f,vn)vixy,  Yon € Vi,

b(un.qn) = (9,90} Q' x Q> Yan € Qx.

The problems we have to solve here concern the existence and uniqueness
of {un,qn} and the estimation of [}u — up|jv and {|p — pallo-

Remark 2.1: We can introduce, as in the continuous problem, operators Ap
from Vi to V and By from V, to Q). We identify @} to a subspace of
Q' extending bilinear forms on @ to bilinear forms on @ by the canonical
“extension by zero” on @}, the orthogonal complement of Qs in Q. We
therefore set for g5, € @},

{95 0)o'xq@ = (g5, Pq,q)-

1t is also natural to define for ¢ € @ its projection onto @}, C Q' by

(P19, 0o'xe = {9, Pon0)@'xo = (PG, 9, Q)¢ xq-

This being done, the operator B, can then be interpreted as an operator from
Vi into @' which will not be, in general, the restriction to V}, of the operator
B. In fact we shall have

(Bavn, 0)@'x@ = (Bnva, P, 0)q1 x@n = b(va, P, q)

(2.2)
= (th, PQh Q>Q’XQ'

In other words, as Pg: can be seen as (Pg, )t we can write
(2.3) Byyy, = (PQ,_ )t By, = PQ;I Bu,, Yvi € Va.

By will therefore coincide with B only if BVa C Q). We shall meet cases
where this inclusion holds but they are far from being the rule. O
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Coming back to problem (2.1), we first introduce some notation. For
g € Q', we set

24 Zn(g) = {vn € Vil b(vn, an) = {9, @n}, YOn € Qn}-
When g = 0, we have evidently,

(2.5) Zn(0) = Ker Bp.

We shall also need constantly

(2.6) Ker Bl = {gn € Qx| b(va,qn) =0, Yup € Va}.

It is clear that a necessary condition in order to have existence of a solution
of (2.1) is

27 Zn(g) # 0.

Some of the results of Section IL.1 will apply directly to the present case,
possibly with some simplifications due to the fact that we are dealing with
finite-dimensional spaces. Note that, in particular, Im B will always be closed.
Moreover, if we have the existence of 2 positive constant @) such that

a(un,vn) 1

(2.8) inf sup ap,

wreKeron onekermy, luallviioally —
this will imply the existence of a positive a? such that

a(uh,vh) 2

(2.9) inf sup o,

vyeKer By, un€KerBn HUhHVHUhHV -
for in the finite-dimensional case, surjectivity and injectivity are equivalent.
Hence we can collect the results of Theorem 1.1, applied to problem (2.1).

Proposition 2.1: Assume that (2.7) and (2.8) are satisfied. Then (2.1) has at
Jeast one solution (up,pn). Moreover ua is uniquely determined in V5, and pa
is uniquely determined in Qn/ Ker B} O

Remark 2.2: In most applications, condition (2.8) will be a consequence of the
ellipticity of a(u,v) on Ker By, that is,

There exists ), > 0 such that

a(vh,vn) 2 abllunll¥, Von € Ker By

Note however that (2.10) is not, in general, a consequence of (1.8) since the
inclusion Ker By, C Ker B is, in general, not true. a

(2.10)

Although Proposition 2.1 jooks simple, its simplicity is hiding fundamental
difficulties. Indeed, a problem may arise when we shall try to get error estimates
in the Section 11.3: p is defined up to an element of Ker B* whereas pp is defined
up to an element of Ker B},. In practice, cases will be met where Ker B}, is

larger than Ker B! (In particular when B is surjective while B, is not). The
next result shows that this question is also related to condition (2.7).
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Proposition 2.2: The following statements are equivalent:

— Forany g €ImB, Zx(g) # 0.

— For any u € V, there exists up = Ilpu € Vi, such that b(u — Mpu,qn) =
07 th € Qh-

— Ker Bt = Ker Bt Qp C Ker B*.

The first two statements are evidently synonymous. To check equivalence
of the last one, take gon € Ker B}. Then b(v,qon) = 0 for any v € V as v can
be replaced by vp by the second statement. The reciprocal is equally obvious. O

We evidently have by the same demonstration,

Proposition 2.3: The following statements are equivalent:

— For any q € Q, there exists gn = &g € Qn, such that b(vn,q — ®rq) =
O, V’U}l € Vh'

— Ker B, = Ker BNV, — Ker B 0

Proposition 2.2 can be summarized by the fact that the following diagram com-
mutes.

B
V —— @

Hnl lqu;‘

Vv, ——— @4
hBQ,,

h

Indeed the second statement can be writien

BhHhu = PQ;‘ Bu.

Proposition 2.3 could also be summarized by a commuting diagram, that
iS, B}léhq = PVP:th.

Specially interesting is the case when B, is the restriction of B to Vi we
then have

{vn, B'q) = (Bua,q) = (Bun, Pq.9) = (vn, B4 P, q)

for Bu, € Qp and ®, can be taken to be the projection from @) into Qn.
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Remark 2.3: A closer look to Proposition 2.2 may be worthwhile before going
further, It tells us that when Ker B} is larger than Ker B*, some discrete prob-
lems might not be well posed [Zn(g) = @] even if the continuous counterpart
is (¢ € ImB). In such cases, additional compatibility conditions have to be
imposed and parasitic components from Ker B} will pollute p,. The inclusion
Ker B} C Ker B is therefore “quasi-essential” even if approximations not sat-
isfying it are still currently used. On the other hand, inclusion Ker By, C Ker B
will be exceptional and approximations where it holds will possess special prop-
erties. 0

Remark 2.4: In practice, a very important case will be Ker B}, = Ker B*. This
will, in particular, be true if B and By are both surjective. O

I1.2.2 Error estimates for the basic problem

We can now come to the essential part of this abstract theory: comparing the
discrete solution {un,pnr} of problem (2.1) to the exact solution of problem
(1.5). Our first result will be:

Proposition 2.4: Let (u,p) be solution of problem (1.5). Assume that (2.7)-
(2.8) are satisfied and let (un, pn) be solution of problem (2.1). We then have

lally . el .
) fu=wlly < (1450) |l e wlle + 0 ind s = ple-
Moreover if Ker By € Ker B, this can be reduced to
(2.12) e = unlly < (1+ ﬂ“l—”) inf  {lu— wally
- ) / wh€Zn(g)

Proof: Let wy, be any element of Zx(g). Since wy, — up € Ker By, we have

apliwn —unllv < sup alwn = un,vh)

v, eKer B, HU"HV
a(wp —u,vp) +alu — up,v
@13) - sup (wn n) +a( hsUh)
vy €Ker By, ”"Uh“V
— eup alwp — w,vp) — &(va,p — pa)
vy eKer By H'UhHV

If Ker By, C Ker B, condition v, € Ker By, implies v4 € Ker B and (2.13) gives

a(wp, — u,v
(2.14) oz,l)l]wh —uplly € sup —L—h———h—)

vhp €Ker By, “Uh”v S ”a” ”wh - u”V;
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and (2.12) follows from the triangle inequality. In the general case(Ker B, ¢
Ker B), we still have as vy, € Ker By, for any ¢, € Q4,

[o(va, p = pa)l = 16(vn, p — )| < [IBl} llvnllvlp — qullq,
and (2.13) becomes

- —b —
s — wnlly < sup 2000 —bnp—ar)
(2.15) on€Ker By, [lvnll
< lell 1w — wally + 16l Ip — arlle,

and (2.11) follows again using the triangle inequality. O

The result just proved is still very incomplete. Besides the fact that we still
have to estimate |{p — pa[lg, we also have to study the quantity

2.16 inf _
(2.16) whelléh(g)llu whllv,

and eventually to relate it to the more standard quantity inf,, ev, |[Jvn — uljv,
for which we can, using finite elements, get a mesh dependent bound.

Remark 2.5: We shall however meet cases where it will be possible, and even
simpler to use directly a bound of (2.16). O

Proposition 2.5: Under the same assumptions as in Proposition 2.4, let k, be
the constant (in general dependent on A) such that

b(vn, qn) .

2.17 sup ————= >k inf + =k ‘,
( ) thI‘ah ”vh”V = Kh QQAEKCIB; ”qh qOh”Q h“qh”Q/ KerBh
for every g5 € @J. Then we have

: lielly .

2.18 f - < =t f - .

@18y it =l < (1450 ind flon — ully

Proof: Let v, be any element of V},. We look for r, € V such that
(2.19) b(ra,qn) = b(u — va, qn), Yan € Q.

As Bu = g, assumption (2.7) ensures that (2.19) has at least one solution. From
Proposition 1.2 and (1.15), we can in fact find a solution satisfying

1 b(u —v
(2.20) rally < = sup 20— ran)
krogiean  llanlle

From (2.19), we also know that wy = rp + vy € Zx(g). Thus writing

< bl =l

b
= wnlly = fhe= v = rally <l wal +lially < (1 L) = v,

we get directly (2.18). 0
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Remark 2.6: Note that we had, as an intermediate result {using (2.20)],

1 b(u — vy, ¢
[lu = wally <flu—wallv + llrallvy < Jlu—wvallv +— sup bl — vr,an)
kn ge@n  llanlle

which easily implies

. . 1 b(u — vn,qn)
2.21 inf uU—w < inf u—v + -— sup ————2}.
@2y iat =l < i, (= onlly + 5 svp S5t

In some cases, (2.21) provides a sharper estimate than (2.18). O

We now marry Propositions 2.4 and 2.5 to get the following classical results.

Proposition 2.6: Assume that problem (1.5) has a solution (u, p). Assume that
(2.7) and (2.8) are satisfied and let (un,ps) be a solution of (2.1). Assume
moreover that there exists two positive constants oy > 0 and kg > 0 such that
o} >« in (2.8) and kj > ko in (2.17). Then there exist two constants ¢; and
¢, independent of A such that

2.22 - s < ey mf flu— ¢y inf - .
(2.22) e — unllv < e inf le ~ wallv + 2 nf llp — anllq
If moreover Ker By, C Ker B, we have

(2.23) llu —uplly < e inf |Ju—wllv.
YREVR

The constants ¢; and ¢, satisfy

o< (1+”£¥)(1+%ﬂ), o< Pl g

ay

Remark 2.7: The condition k, > ko > 0, will be known in the following as the
inf-sup condition. It is often referred to in the literature as the Babuska—Brezzi
condition. It is a sufficient but not a necessary condition for estimates (2.22)
and (2.23). For additional comments on this point, see Remark 2.11 below. O

Having now obtained error bounds for up, there remains to study the error
on the Lagrange multiplier p,. Here again, the properties of By, and of its lifting
are an essential part of the discussion.

Proposition 2.7: Under the same hypotheses as in Proposition 2.4 and 2.5, we
have the error estimate

llall

T e allv

2.24) |lp — pullo/kerB: < (1 + H%}) onf llan —plle +
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Proof: Let us subtract the first equation of (2.1) from the first equation of (1.5).
We get
a(u—u;,,v;,)+b(v;,,p—p;,):0, You € Vi,

so that for g5 € y, there comes
b(vn,qn — pn) = —a(u — us,va) — b(vn,p — qa)-

Using this and (2.17) we have,

1 b(vn,qn — pn
llan — pallo/ kermy < 7= sup Bun, an ~ pn)
knwnevi  llvallv
(2.25)
_ 1 sup b(vn,p — qn) + a(u — un, va)
kn vr €V} Huh”V

One obtains therefore
1
llan — pallq/xer Bt < ~h(Hb|l (lp — gnllg + llafl fu ~ unfiv),

which implies (2.24) by the triangle inequality. O

Remark 2.8: Comparing estimates (2.24) and (2.22) one sees that the estimate
for ||p ~ pallg depends on 1/k? whereas the estimate for |Ju — uyl|y depends
only on 1/ks. It can thus be expected, and this is verified in practice, that a
small value of kj will have more dramatic effects on p, than on uy. O

Remark 2.9: The inf-sup condition is again crucial to estimate ||p — pallg. It
must also be remarked that the error on pp is estimated up to an element of
Ker B} . If the kernel of B}, is larger than the kernel of B, this means that some
components of p are not well approximated. However this possible imprecision
on ps might have no effect on the error ||u; — ully. O

We shall come back later to variants and extensions of the above results.
Before doing so, we shall pay some special attention to the fundamental hy-
potheses of Proposition 2.6.

IL.2.3 The inf-sup condition: criteria

We have met in Section 1I.1 the hypothesis,

b('Uh:Qh) .
2.26 sup ————= > k inf + ,
(2.26) wevy lmllv 7~ ¢ gon€Ker BY llgn + aonlle

which is nothing but (2.17) when ky > ko > 0. Refering to Proposition 1.2,
this hypothesis means that B, has an uniformly continuous lifting (with respect
to k). This is classically known as the inf-sup condition.
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Going back to the estimates (2.22) or (2.24) we see that the case when
kn — 0 will mean a loss of precision and even a lack of convergence. Checking
the inf-sup condition is thus a very important point in the study of a saddle point
problem. Condition (2.26) is rather abstract and is hard to check as such. We
now give criteria that can be used in many important cases.

Proposition 2.8: Assume that we are given spaces W «— V and S such that
S5NQy C Q. Let |-] be a seminorm on S and ||-||w be a norm on W. Suppose
that

su b(w,s;,)
@27 o el

> Bw 1suls, Vs € SNQy

and assume that there exists a family of uniformly continuous operators II,
from IV into V' satisfying

(2.28) {b(th —w,s,) =0, Vsp € SN Qx,

Mawllv < cffwl]w.
with ¢ independent of h. Then we have

b
(2.29) sup L3 o Wen € SNQh
vR €V, Il'UhHV

with kg = fw /e

Proof: Indeed we have

b(vhysh) b(th’Sh) b(w)sh)
su —_— su ———— e T ———————
wnevy Noally “wew Mawlly  wew [Haully
S sup 2] S Bw
wew ¢ |Jwllw ¢

Remark 2.10: In most applications, we shall take W =V, S=Q and |- | =
| - llg/Kerpe- In this case, the first condition of (2.28) indeed implies from
Proposition 2.2 that Ker B! C Ker B! and we can summarize Proposition 2.8
by saying that if the continuous inf-sup condition (1.27) holds, and if we have
{2.28), then the discrete inf-sup condition holds. 0

In some cases, it will be convenient to choose W to be a strict subspace of
V. This will, for instance, be the case when V is not smooth enough to allow a
simple construction of the operator II,. Obviously, we shall then have to check
the inf-sup condition (2.27) on W, usually with S = Q and [-|s = {|-{|q/ Ker B!-
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The more general statement of Proposition 2.8 will also be useful for some
special cases where Ker B} is larger than Ker B* and where we would like to
use |- {s = || - (lq/Kers: . In those cases, (2.28) will hold only for an ad hoc
choice of W and the main trouble will be to obtain (2.27) for this W.

Finally, there will still be other cases in which a special choice of S is
needed. We shall meet, for example, cases where Ker B} = Ker B* = {0},
where V' is smooth enough to allow the construction of II, but where the
continuous inf~sup condition holds only if one takes a space S which is larger
than Q) so that |- |s < |} - |lg-

Remark 2.11: Assume that for every w € W C V one has Z,(Bw) # 0,
so that the discrete problem (1.5) with ¢ = Bw and f = Aw has a solution
(un,pn). If one requires that [Jup — wllv < cljw|lw (which is somehow a
weaker condition than requiring the convergence of u, to w), then one can set
up = Hjpw and (2.28) is satisfied, (hence also the inf—sup condition). This shows
that the existence of an operator I, which satisfies (2.28) (hence the validity of
the inf-sup condition) is in a sense necessary if we want a reasonable behavior
of the discrete problemi. However, the explicit construction of I, will be casy
in some cases but very difficult in others. 0

There will be cases in which IIj, will be constructed in two steps. Namely,
we have the following proposition.

Proposition 2.9: Let W < V' be a subspace of V' for which (2.27) holds. Let
I; € £L(W,V4) and II; € £(V, V}) be such that

[Miwlly < e llw]jw,
(2.30) b(lov — v, qn) = 0, Ygn € Qn,
[Ma(I - M)wl|ly < e [lwllw,

then (2.28) holds, hence the inf-sup condition follows.

Proof: We set l,w = My(w — H w) 4+ Myw. It is easy to check that (2.28)
holds. Indeed,

b(Ipw, ga) = b(M2(w ~ Myw), gn) + b(Tyw, gn)
= b(w ~ Mw,qs) + (1w, gs)
= b{(w, gn)

and

Mawlly < ([T2(w - Tiw)y + {[Tiwfly < (ca +e1)ljwliw. O
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In applications, II; will be a kind of “best approximation” operator. To
fix ideas, it will verify an estimate of type [|[Il;w — wijv < ch® [[w|lw. On
the other hand, II, will be a local adjustment (typically by bubble functions) in
order to satisfy the first condition of (2.28).

A last remark about the operator II,. It is sometimes possible to build it
so that an error bound is directly available on ||Ilsu ~ u||v, independently of
the inf-sup condition. One then has

Proposition 2.10: Let u be solution of problem (1.5). If one can build ITyu €

Zr(g), that is satisfying b(u — Mxu, ¢n) = 0, Ygu € Q4, then one has
lu = uallv < erlfu — Mpully +c2 inf |lp—anlle,
(2.31) qhEQn

co= (14 lall/en), ez =|lbll/c.

Proof: This is obvious from Proposition 2.4. 0

As the above results will play an essential role throughout this book, we
shall now summarize its most usual form in the following.

Theorem 2.1: Let (u,p) € V x @ and (up,pn) € Vi x Qp be respectively
solutions of problems,

a(u,v)+b(v,p) = (f,v), YveV,
2.32
@32) { b(u,9) = {9,9), VY9€Q,
and
(233) { G(Uh, vh)+b(vh1ph) = (f: vh)) V'Uh S Vh;
b(uhaqh) = <g)qh)v th € Qh~

Assume that the inf-sup condition

b
(2.34) inf  sup (v, 4n) > ko >0
ane@n vy [lonllviianllo/ ke Be

is satisfied and let a(-, -) be uniformly coercive on Ker Bj, that is, there exists
ag > 0 such that

(2.35) a(voh,vgh) > agllbohllz, Yvon € Ker By,

Then one has the following estimate, with a constant ¢ depending on ||a||, ||8]],
ko, ap but independent of h:

236) Nu—un|lv +Hlp—pallos ke pt < C(uiféfv Hu—vnHv+qhigghllp~thlo)-U

The reader may refer to the previous propositions to get more detailed
forms of this result.
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Remark 2.12: As we have seen, condition (2.35) can be replaced by the weaker
condition (2.8). O

11.2.4 Extensions of error estimates

We have introduced in Section 11.1.2 an extended problem in which a third
bilinear form ¢(-,-) appeared. We shall consider now the question of error
estimation for this problem. We shall use a discrete analogue of Theorem 1.2
and in particular of its variant provided by Remark 1.8. We first introduce the
discrete problem

find up € Vi and py € @ such that
(2.37) a(un,vn) + b(vn, qn) = (f,vs), Yoy € W,
b(un, qn) — c(qn, qn) = (g, an), Van € Qn,

where, as usual, a(-,-), b(:,-), and ¢(-,-) are bilinear continuous forms on
VxV,onV x @, and Q x @ respectively, and V4, C V and Qn C Q are
finite-dimensional subspaces.

Proposition 2.11: Assume that a(-,-) and c(-,-) are positive semidefinite [that
is (1.35) and (1.41), respectively]. Assume moreover that c(-,-) is symmetric,
that a(-,-) satisfies (1.24) and (2.8), and that Im B is closed in Q' whereas
b(-,-) satisfies (2.34). Assume finally that condition (1.60) holds. Then for
every f € V' and g € Im B problems (1.36) and (2.37) have a unique solution.
Moreover we have

(2.38) |lu —unlly +llp — pallg
1 1

. 1 . .
< K (lall, (40 flell 50 om0 =) ((int, e = wnllv + inf flp =~ anlle)

with K bounded on bounded subsets.

Proof. Existence and uniqueness for both problems follow from Theorem 1.2.
In order to get the estimate (2.38) we note that from (1.36) and (2.37) we have,
for all 4, € Vi and pp € Qh,

a(tin — up,va) + b(vk, Pn — pr) = a(ity — u,vy) + b(va, Pp — P),
Yu, € Vi,

b(tn — up,qn) — c(Br — pr,gn) = b(tn — u,qn) — c(Pr — 2, ¢n),
Yqn € Q.

Hence (ip — up,Pn — pn) is the solution of a problem of type (2.37) with
right-hand side ' € V; and G € Q), defined by

(2.39)

(2.40) F :vp — a(iiy — w,vn) + b(va, Pn — pn),
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(2.41) G =G - Gy,
(242) C—; fqh b(ah - u:qh))
(2.43) Go : qn — c(Pn — P, an) =: (g0, qn)-

It is clear that
244) ||F|lv: +1|Gllgr + (c(g0, q0))*/?
< (llalt + 24|81l + liel) (i — ullv + I7n = pllg)-

Applying Theorem 1.2 (or, rather, Remark 1.8} to (2.39) and using (2.44), we
obtain

(245)  |Jan — unllv +IPn — pallQ
1 1 1 - -
< K(llall, 101l ety = — ) (llan ~ ullv +I7s — pllQ)-
0o Qp Yo

Since i, and pp are arbitrarily chosen in Vj, and ¢, we obtain (2.38) from
(2.45) and the triangle inequality.

Remark 2.13: The above proof applies in particular to the case c(-,-) = 0. Tt
is more general than Theorem 2.1 by allowing coerciveness to be replaced by
(2.8). In practice such a condition may well be rather hard to check. 1

We can also consider the case of Remark 1.13 in which ¢(-, -) depends on
a parameter A and there exists constants ¢q and v such that,

(2.46) ex(p,@) Scodllpllw llgllw,  Yge W,

(2.47) ex(g,9) = 7 llalfiy, Vg e W,

with W — Q. We have the following proposition:

Proposition 2.12: Let a(,-) and &(-,-) be as in Proposition 2.11 and assume

that a(-, ) is coercive on V' and ¢(:,-) satisfies (2.46), (2.47). Then for every
f eV and g € Im B we have

(248) |lux = uall}y +1lpr — pallf, ker e + Alpa = palliv

< inf — 2 inf — 242 - 2.

< e inf, hon —vally + inf {llps = aall% + Allpr — anlliv )
The proof follows the lines of Proposition 2.11, using (1.66) with (g1, ) =
b(iip — ux, qn) and {g2,9r) = —cx (Pr — pr, gn) (instead of using Remark 1.8).

Estimate (2.48) indeed breaks down in W for A small but still yields an optimal
estimate in Q. 0
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I1.2.5 Various generalizations of error estimates

We have considered up to now the most basic form of mixed problems. Nu-
merous variations are however possible. Some of them are too special to merit
an abstract treatment and will be presented on specific examples in subsequent
chapters. We consider here some problems arising in quite a large number of
practical situations.

The first pathology that we consider is the case where coerciveness on
Ker By, does not hold but can be replaced by a weaker condition. Let us suppose
V — H where H is also a Hilbert space. We suppose that the bilinear form
a(-,-) satisfies the hypotheses

(2.49) a(v,v) > a[[v[l%,

(2:50) la(u, v} < llall llulla (ol

This situation arises in two kinds of examples.

— || - |l& is a norm on Ker B so that (2.49) implies coerciveness on Ker B.
It may happen however that for a discretization of the problem one does
not have Ker By C Ker B and that the discrete problem is not coercive
on Ker B;. Condition (2.49) nevertheless ensures existence of the discrete
solution by the equivalence of norms in a finite-dimensional space (see
below). Convergence properties are however likely to be altered. In the
mixed formulation of elasticity introduced in Chapter I, we have V =
(H(div; ©))7 whereas the bilinear form a(u,v) = [, : T dz is coercive
only on (L%(Q2))% = H. This is enough to have coerciveness on Ker B
but not in general on Ker By, unless one is clever and builds V,, and Q4 in
order to have Ker By C Ker B. In general the analysis of this problem is
difficult as we shall see in Chapter VIL

— One considers an ill-posed problem in the sense that the existence of (u, p)
cannot be obtained directly in V' x @ but only for instance through a
regularity argument. Existence of a discrete solution however holds and
one would like to get error estimates. Such is the case in the ¢ — w
mixed formulation of the biharmonic problem that we have seen in (3.54)
of chapter 1. For a more detailed analysis of this case, see chapter IV.

On the finite-dimensional space Vj, || - ||v and || - ||z are equivalent and we
thus have
251) lonliv < S(B) lfoallar-

In practice, S(h) will be given, for finite element approximations, by the
inverse inequality (CIARLET [B]).

We now consider an error estimate for the simple case.
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Proposition 2.13: Let (u, p) be solution of problem (1.5) and (up,ps) be so-
lution of problem (2.1). Under hypotheses (2.49)—(2.50)—«2.51), we have the
estimate

a .
252) Jlu— il < (1+ '%”) inf [loa — ullu

v €Zn(g)
[jb]|S(h) .
aZloA) e _
+ = ol llgn — pllQ

The proof is the same as for Proposition 2.4, introducing the bound

b(un — vn, g — p) <] S(R) [Jun — valli llgn — pllg-

The rest of the analysis can be continued from this point but with a loss of
accuracy coming from the S(h) factor. O

Remark 2.14: In fact, the general bound in this case would be

a .
e = waller < (14 U) inf [jon — ulln
(2.53) @ En)
’ . b(U}”p— Qh)
+inf sup ——=
o vaeKern  lluallm

for which (2.52) is a brute force bound. It is however reasonable to expect
in some cases the term b(vn,p — qn) to have for vy, € Ker B, some super-
convergence property either in general or for special types of approximation
(KIKUCHI-ANDO [A], SCAPOLLA [A]). If Ker By, C Ker B, this term actu-
ally vanishes. It must also be noted that we do not have in general a bound of
infy, ¢z, () llvn — ully by infy, ev, [lva — ufly . O

Another variant that will be useful in the study of some hybrid methods is
the following.

Let |u|y be a continuous seminorm on V and let M denote its kernel. Then
|- |v is a norm on the quotient space V/M. We suppose that we have

(2.54) a(v,v) > alu|>, Vv €V, a independent of h,
and
(2.55) la(u, v)| < flaf| [ulv |vfv.

Let us suppose M C V3 and let us suppose that for p € @, one can build
qn € Qp such that b(vy,p— gn) = 0, Yvp € M. We then have the bound

(2.56) b(vn, 2 — )l < 1Bl [onlv lp — aalle,

and the following proposition holds.

§11.2 Mixed and Hybrid Finite Element Methods 65

Proposition 2.14: Let (u, p) be solution of problem (1.5) and (us,ps) be so-
lution of problem (2.1). Let

(2.57) Qn(p) = {gn| b(v,p — q») = 0. Yv € M},
If (2.54) and (2.55) are satisfied, then we have the estimate

lally :
2.58 — < 1+ — f - b f - .a
(2:58) fu=wly < [L+ 18] nt u-wlv ot 0]l = aslle

I1.2.6 Perturbations of the problem, nonconforming methods

We shall now rapidly consider the effect on error estimates of changing problem
(2.1) into a perturbed problem of the form

{ah(u;:,vh)+bh(vh,ph) = (f,vn}n, Yup € Va,
ba(un, qn) = (g, ar)n, Yaqn € Qn,

where ap(-,-) and by(-,-) are, in a sense to be made precise, approximations
of a(-,-) and b(-,-), and where (-, -}, denotes an approximation of the duality
brackets (-, Jvixv or {-, ) o'xQ

(2.59)

The reasons underlying such a study are twofold:

— Formulation of type (2.59) arise when nonconforming approximations are
introduced. In this case we no longer have V,, C V and ), C Q so that the
problem must be imbedded in larger spaces. We shall give an alternative
treatment of nonconforming methods using domain decomposition methods
in Chapter IV. However, their importance is worth their presence in our
abstract discussion.

— Using numerical quadrature formulas also leads to problems of type (2.59).
Numerical integration is a standard part of the finite element method and
it is important to be acquainted with its consequences.

Remark 2.15: The concept of numerical integration is taken here in a very
general sense and is not restricted to reduced integration methods (cf. Section
VL7). We also mean by this any procedure where b(vy, qp) is replaced by a
(weaker) expression of the form

(2.60) bn(vh, qn) = (IBvn,qn)Q; xQu»

where I is a continuous operator from B(V}) into @}. In practice this could
mean as in Chapter VI an interpolation operator. The usual mixed formulation
takes I to be the projection operator on @} and we have

(IBvn,qn)g. = {Bvn,qn).

In general we can consider I to project Bv, with respect to a duality
product {-, -}, defined by (IBUh,qh)Q;leh = (Bvp,qn))a-0
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To include the nonconforming case in our setting we suppose that there
exist spaces X and Y such that V, and V' are closed subspaces of X. In the
same way Q5 and (Q should be closed subspaces of Y. We suppose that an(, -)
and by(-, -) satisfy

(2.61) lan(un,vn)| < ¢ |Junllx lloallx

(2.62) [ba(vn, gn)l < e livnllx llanlly

We suppose that ap(-,-) is coercive on Ker B, (where Ker By = {vn € Vi |
br(vn,qn) =0, : Ygn € Qu), that is,

(2.63) an(von,voa) > o Hvoh[l%(, Yvor € Ker By.

We suppose that by satisfies, with ko independent of h,

(2.64) sup O (vn, 95)

Jup W > ko [lgnlly

that is, B is surjective (we consider the general case later). Finally we define

(265) ”f”h: sup <f’vh>h’ Hth: sup (g’qh>h.
wneva llonllx ameQn llanlly

We obviously have the following result.

Proposition 2.15: Under hypotheses (2.61) through (2.65), problem (2.59) has
a unique solution and there exists a constant ¢ independent of h such that

(2.66) (funtlx +llpally < c (1A + llglin)- O

We now want, as in Proposition 2.12, to use this stability result to obtain
an error estimate. Let then (u, p) be the solution of problem (1.5). After a few
tedicus manipulations, one gets from (2.59)

(2.67) ap(u— un,vn)+ ba(va,p — Pr)
= [an(u, un) + bn(va, p) — (£, o)) + [{(F,vn) — {f, vn)nl,

(2.68) ba(u — un, qn) = [ba(u, gn) = (g, an)] + (g, an) — (g, andnl;

provided we can give a meaning to all the terms in (2.67), (2.68). For numerical
integration, this will require extra regularity whereas for nonconforming meth-
ods, ap(-,-) and by (-, -) will be extensions of a(-,-) and b(-,-) to less regular
spaces. It wil therefore be impossible to state a general precise result. However,
using the same stability argument as in Proposition 2.12 we have formally
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Proposition 2.16: Let (u,p) be the solution of problem (1.5) and (un,ps) be
the solution of problem (2.59). Assume that the hypotheses of Proposition 2.15
hold, then we have

(2.69) |lu—unllx +lp—pally <
c (U:IE]f“/h [lu —vnl|lx + qhiggh P — qrlly + Min + Man + M3y, + M4h>

where we define the “consistency terms”

fan(u, ) + bn(ve,p) — (£, vn)

(2.70) Min = sup
R EVi llonlix
2.71) M, = sup [/, vn) — (f, Uh)hl
vhEV) ”"-'h“X ’
2.72) Map = sup 122(90) = (9, 4n)]
ghEQN HQhHY !
(2.73) M = sup K000) = {00l
IhEQh ||th Y

Using Proposition 2.16 in practice means giving a sense to the extra terms
Mip, Moy, Man, Msy and bounding them properly.

It is worth considering a few special cases. In many problems, it will be
natural to use a nonconforming approximation of V' but a conforming one on
Q. For instance, in Stokes problem (Chapter VI) we have Q = L?(Q2) and
it is rather hard to think of a nonconforming approximation to this space. If
we suppose then that b;(u, ¢5) = b(u, ¢n), which is usually the case when no
numerical integration is used, then we have Mz, = 0.

The terms My, and My, normally come from the use of numerical quadra-
ture formulas for the right-hand sides, and they can be handled by standard
techniques (CIARLET [B]).

Finally an important case is the use of conforming approximations where
a(-,-) and (-, -) are computed by numerical quadrature. In this case, we have
(if u is smooth enough to give a sense to ax(u,vy))

(2.74) a(u, vn) 4 b(va,p) = (f,va) =0

and we can transform M, to

275) My = sup ia(u,bh)—ﬂh(")vh)|+ cu |b(vn, p) = bn (v, p)|
vnEV flonllv unEVa [[vallv

and M3z to

(2.76) M;;h = sup lb(u,qh) = bn(u, qn)| o
qhEQn ”‘Ih”Q
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We have assumed in the previous estimates that B, was surjective. Let
us now see how this condition can be checked and eventually relaxed for the
case of nonconforming methods. We assume therefore that the bilinear forms
an(:,-) and by(-,-) are now extensions of a(-,-) and b(-,-) to X x X and
X x Y respectively, It is then natural to consider the extension B of B with
B: X —Y'and B'- Y — X' . We thus have by the definitions of B and
By

(2.77) Bu = Pg/(Bu),
(2.78) Bruy = Pg,, (Bup).
Whenever () = Y, this reduces to Bu = Bu and Brup = PQ‘l(Buh) that is
the standard conforming case.

Let us now make the assumption that B has a closed range in Y, that is,
bn(,y)

(2.79)
cex |lzllx

> ko |lylly; ker -

In general checking (2.79) requires a good choice of X and Y. Whenever
this holds we have:

Proposition 2.17: Let the bilinear form bs(-, -) satisfy (2.79) and let there exist
a family of uniformly continuous operators II, : X — V), such that one has

(2.80) ba(u,qn) = ba(Mpu, qn), Van € Qn,
(2.81) HTaullx < e juflx,

with constant ¢ independant of h. If, moreover, Im By, — Im I§, then Ker B}, —
Ker I3t and one has

b
282) h(Vh,qn)

sup ———=2 >kl gy 1.
S Tonllx 2 o llanlly/ ker B¢

The proof is the same as for Proposition 2.8. 1

The error estimate (2.69) can then be changed to bound ||p—pa|ly, ker 5+ instead
of ||lp — pally. The case Y = @ thus reduces to a standard ||p — pallq/ Ker B
and using Proposition 2.17, requires a good choice of X. In the same way when
Y # @, it should be chosen mn order to keep Ker B! small enough, the best
situation being Ker Bt = Ker B*. These technical problems will of course have
to be solved by different ways on each particular problem.

Let us turn now to the case of conforming approximations with numerical
integration, in which Vi, C V, Qn C @ but b4 (-, -) is an approximation of b(-, ).
IE is sometimes interesting to compare on Vi, x @y the two operators By and
By, defined respectively by b(vy, qn) = (Bau,qn) and by (vp, qn) = (Brvn, gn).
Knowing for instance that By satisfies the inf-sup condition, what can be said
of B,. We have the following criterion.
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Proposition 2.18: Let B, and B be defined respectively by b(-,-) and bx(-, -).
The following statements are then equivalent.
(2.83)

a) Ker B}, C Ker B,

b) Im Bx C Im B,
C) Yuvn, 3wy = lpvp such that I)(vh,qh) = bh(wh,qh), Yan € Q.

The proof is a simpler version of the proof of Proposition 2.2. 00

The above result is symmetrical with respect to By, and By. 1t is then clear
that we have the criterion given by the following

Proposition 2.19: Let By, and B, be defined respectively by b(-,-) and bs(-,-)
and suppose that there exists an invertible operator IIx; Vi, — V4 such that

(2.84) ITavallv < collvallv, 15 vallv S et onlly

and such that

(2.85) b(va, qn) = bn(Mpon, qn), Van € Qn

Then, if either of Bb or [?,, satisﬁesﬂthe inf-sup condition, both do, and we
have Ker B, = Ker 3}, Im B, = Im 53;,. 1

In practice this means that the numerical quadrature is not exact for the com-
putation of b(vs, gs) but rather integrates b(I,vn, qn) with IIzvs near enough
to vy,

It is also useful to consider the following result.

Proposition 2.20: Let us suppose that B} and B, have the same kernel, that
By, satisfies the inf-sup condition, and that there exists a constant C'(h), with
C(h) — 0 when h — 0, such that

(2.86) 16(vn, gn = bn(va, qn)| < C(R) lferllv llgnllQ,/ Ker 8y -
Then for ~ small encugh, b,(-,-) also satisfies the inf-sup condition.

Indeed one may write b(vh, qn) = bn(vn, gn)+ (b(va, gn) — ba(va, ¢n)) and
thus

cup Yman) - ba(Vn,gn) 16(vn, gn) — b (va, gn)|

ey Toally. = ety lnllv ety [fonllv

Using (2.85) and the inf-sup condition for b(-,-) we get

bh(vh’qh)
sup ———"2L > (kg — C(I :
U;.Elz/ thHV = ( 0 ( l))HQh HQ»./KerBh

that is, the desired result. 0]
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11.2.7 Dual error estimates

We now present, to end this section on error estimates, an extension of the
Aubin-Nitsche’s duality technique (AUBIN [A], NITSCHE [A]) to the analysis
of problem (1.5). We consider an abstract setting that will be general enough
to include most cases where we will like to use such techniques for instance
in Chapter VI for Stokes problem (to get L2(2)-estimates) or in Chapter V for
Dirichlet’s problem (to get H ~!-estimates). We refer to FALK-OSBORN [A]
where similar, and in some cases more general, results are presented.

Let us then consider two spaces V_ and Q_ (the minus index intuitively
meaning a “less regular” space) with the dense inclusions

(2.87) VeV, and Q—Q-.

We would like to estimate |Ju — up|lv_ and ||p — pallq_. Let us denote
(2.88) Vi=(V), QY =(Q-).

We then have from (2.87)

(2.89) ViV, Q,—Q,

and we can thus make the following hypothesis.

Hypothesis H1: For any f; € V}, g4+ € @', NIm B, the solution (w, 5) of the
problem

(290) { a(v’ IU) + b(vi 5) = <f+ ) U)y Yv € V,

b(w>q) = (g+yQ)’ Vq € Qy

belongs to Vi x Q44 , where V4 — V, Q14 — Q and we have the estimate

(2.91) ellv,, +1ls

losss e < ¢ (1fllvy +llgllgy)- O

This hypothesis evidently means in practice that we have a regularity prop-
erty and that f € V|, g € Q', yield a more regular solution. Moreover we are
implicitly assuming that Ker B* C Q4 4. We then have

Theorem 2.2: Let hypothesis H1 hold and let (u, p) be the solution of problem
(2.32) and (uy, pn) be the solution of problem (2.33). We then have under the
hypotheses of Theorem 2.1

(2.92) |lu—un|lv_ + llp—pallo_/ker Bt < €1 (lu—unlly +|lp—pnllqs kerBt)

x( inf  sup + inf sup uS-’Lh”Q)
wEV wreV, ”wHV++ 2€Q34 n€EQH HS”Q++

(lw—wnlv
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Proof: Let us choose fi € V] and g4 € Q) NIm B with ||f4]lv; =1 and
||g+||QI+ = 1 such that one has

(293 { (fru—un)vixv. = [lu—unllv_,

(94+,p —Pr)q, xq. = [P — prllo_/ Ker B,

and let (w,s) € V4 % Q44 be the solution of (2.90) and therefore bounded
by (2.91). We may thus write

(2-94) (HwHV-H. + ”SHV++) < é.
Making v = v — u, and ¢ = p — pp, in (2.90) we thus have from (2.93):

(2.95) ”u - uhuv_ + ”p - ph”Q-/KerB‘
= a(u — up, w) + b(u — up, s) + b(w,p — pa).

But we know that one also has, substracting (2.32) and (2.33)

(2.96) {“(“—Uh,wh)+b(wmp“ph) =0, Ywy € Vy,

b(u—uh,qh):o, thEQh.

We may thus write in (2.95),

(297) fju— unllv. +1lp — pallo-/Ker B¢
=a(u— up,w— wy) + b(u— un, s — gn) + b(w — wa,p — p1)

and (2.92) follows. O

In practice we shall use the fact that w € V4 and s € Q4.4 are regular
to obtain bounds

(2.98) inf, lw = wallv < m(h) [lwllv,, < m(h)é,
Wh h
(2.99) oinf lls - qnlle < n(h) llsllges < n(h) &,

so that (2.92) yields the estimate

(2.100) flu—unllv. + |lp—pnllo_s Ker Bt
< m(h)ér (lu—unllv + lip—palle) + n(h) é2 (lu—uallv ),

which will eventually be a better estimate if m(/) and n(h) are small. O
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Remark 2.16: We shall also use in Chapter V a superconvergence result that
can be extended to the abstract setting of Theorem 2.2.

Let us suppose that the approximations at hand satisfy the inclusion
Ker By, < Ker B. From Proposition 2.3, we then know there exists pr, € Gn
such that

(2.101) b{vn,pn —p) =0, Yop € Vi,

and we now want to find an estimate on ||pr — pallo . In order to do so, we
consider (z, ¢) the solution of the problem

{ a(v,z) + b(v,¢) = 0, Yv eV,
b(z,q) = ((Bn — Pn, 9@, YV4EQ.

This is a well-posed problem in V x Q. It may happen (that will be the case in
the application of Chapter V) that (z, ¢) is more regular and that (z, ¢) belongs
to V4 X @44 for properly chosen spaces. We now show that it is then possible
to estimate ||pn ~ pall@. Indeed from (2.102) we have

(2.102)

(2.103) s — pally = b(z,Bs — pa) = b(Taz, P — pa),

where I,z is the special interpolate such that é(z — Tlxz,¢qs) = 0 for all g as
in (2.28). (The existence of I1,z is equivalent to say that the inf-sup condition
holds, according to Proposition 2.8 and Remark 2.11.) Using (2.101) in (2.103)
we then have

lon — pallly = 6Tz, p — pa)
(2.104) = a(u;, - U,th)

= a(up ~ u,Mpz — z) + alup — v, 2).
Making v = up — u in (2.102) this becomes, for all g5 € Q4,
(2.105) Hﬁh —_ thQQ = a(u;, —u,[pz — Z) — b(uh — U,d))
=a(up —u,Mpz — z) — b(Uh — U, ¢ — qn).
Finally from (2.105) we have, for all g5 € @3,
(2.100) 5% — 2all® < llun = ullv (llz — Hazllv + || — anllq)-

If I,z approximates z with optimal order (for z € V,.4) and if we have an

estimate [|z]|v,, + [l¢llg,. < €|lPn — pallg, then we get from (2.98), (2.99),
and (2.106) the estimate:

(2.107) lon = pall < {lu — wnllv ¢ [m(A) + n(h)].

This result uses the strong assumption Ker By C Ker B and its use is rather
technical. Anyhow the above analysis shows when it can be expected to hold,
besides the example of Chapter V. O
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I1.3  Numerical Properties of the Discrete Problem

This section will present a few general facts related to numerical computations
with the previously described problem. As we are still in a rather abstract
setting, we will not be able to obtain directly usable results. However some
basic facts are common to a large number of methods and presenting them in
a unified frame may help understand the relations existing between apparently
different methods.

I1.3.1 The matrix form of the discrete problem

We shall consider first problem (2.1) and develop a matrix form suited to nu-
merical computation. We shall set, for the finite-dimensional spaces V} and

Qn,

(3.1) { N = dim Vh,

M = dim Q,

and we use a basis of theses spaces, namely, {v,s] 1 <4 < N} for V4 and
{q.n] 1 < i < M} for Q. We can now define

(3.2) ay; = a(vyh, Van),
(3.3) biy = b(vyn, qin),
(3.4) fo = (f,vn),
(3.5) 9. = (9, n)-

We denote Anxn = (@), Basn = (bi;), fv = (fi), gm = (gi) and by
u={a;}, p={B} the vectors of ”" and IRM formed by the coeficients of
uy, and py in the expressions

N

3.6) UL =) o4 vun,
=1
M

3.7 Ph = Zﬁl Qih,
i=1

Problem (2.1) can now be written in matrix form as

A Blp=f
(3.8) {"+ pP="5

Bu =g,
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or

A B u f
6 (5 2)G)-G)
In practice, the bases {v;n} and {q.n} will be built using a finite element tech-
nique. This will impose additional structure on problem (3.9). We can however
sec that for a symmetric bilinear form a(-, -) we have to solve a symmetric but,
in general, indefinite linear system. The fact that we have positive and negative

eigenvalues is, of course, directly related to the fact that we discretize a saddle
point problem.

It can be seen from (3.9) that the system will be singular if Ker B* # {0}.
The right-hand side will then have to satisfy a compatibility condition: g must
belong to Im B. As we have already said, this can happen even if the continous
problem is surjective.

Finally one can eluninate the variable u from this linear system, at least if
matrix A is invertible. Indeed one gets from (3.8),
(3.10) u=A"'f— A"'B'p
and thus denoting u, any solution of Bu, = g
(3.11) Bu= BA™'f- BA™'B'p =g = Bu,.
We can then solve for p in the problem
(3.12) BA™!B'p= BA™'f - Bu,.

This is a discrete form of the dual problem of Section 1.3. Let us consider the
matrix BA~'B?. If matrix A is positive definite, this matrix is also positive
semidefinite. Indeed one has

(3.13) (BAT'B'p,p)pv = (A™'B'p, B'p)um > o || B* pl|pm -

It is positive definite if Ker B* = {0}. Problem (3.12) is therefore easier to
solve than problem (3.9), as numerical methods for positive definite systems are
more efficient and more stable.

Unfortunately this simplification of the problem cannot in general be done
in practice. The trouble comes from A~! which is likely to be a full matrix even
if A is sparse. The system (3.12) is then too large to be stored and handled. We
shall however meet some cases where such a reduction of the problem can be
done, thus providing an efficient solution method.
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11.3.2 Eigenvalue problem associated with the inf-sup condition

The convergence analysis of Section I1.2 relied heavily on the inf-sup condition
stating that the operator Bj, must have an uniformly continuous lifting. In
abstract form, this means checking that one has, with kp > kg > 0,

b(vn, gn

(3.14) Sup W > kn llanllgu/xernty  Van € Qa.

We shall now give an interpretation of constant ks as a generalized singular
value of the matrix representing the operator Bj, in the discrete problem. This
singular value can be identified with the square root of a generalized eigenvalue
problem. Although the following development is very elementary, it cannot
easily be found in elementary texts and we thought it was worth presenting it.
We also refer to MALKUS [A] where similar discussions can be found.

We have already defined a matrix B such that if vy = Zil o, v, and
gn = ijzl B.qun, one has, denoting v = {a,}, q = {8.},

(3.15) b(vh,qh) ={(Bv,q)pm = {v, th)mn.

We shall also need the matrices S and T associated with the scalar product of
Vi and Q. Let us define

(3.16) 855 = (928, 958))Qu »
(3.17) tiy = ((vin, v0)) v s

<t,j< M,
1<i,j<N.

One then clearly has with the same notations as above

(3.18) Nlesll?, = (Tv, Vymw
and
(3.19) lgnll¥, = (Sq, q)rm.

The operators S and T can be considered as isomorphisms from the copy of
RY and IRM representing V;, and Q, onto another copy representing the dual
spaces V) and Q},. We can summarize the situation by the Diagram IL1.

B
Vh%ﬂ?,N -———»Q;IMRM

[r L

M
h IR —— Qn~ RM

Diagram II.1
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We now consider the following generalized singular value problem. Find a
basis of T-orthonormal vectors of IRY, {v;| 1 < i < N}, and a basis of S-
orthonormal vectors of RM, {q;| 1 < i < M}, such that there exists p; > 0
satisfying

(3.20) Bv; = p;5q;,
(3.21) B'q; = piTvi,

Yv; ¢ Ker I3,
Yq; ¢ Ker B,

The case S = T = I is the standard singular value problem for matrix B. It
is easily shown that such g;, v; and g; exist. Indeed one gets from (3.20) and
(3.21), denoting by r the rank of B,

(3.22) BT 'B'q; = p? Sqi, 1
1

i<,
(3.23) B'S™'Bv; = p? Tv;, i<

IA A

Both these problems are standard generalized eigenvalue problems. It is ele-
mentary to show that their solution yield a solution of (3.20) and (3.21). One
then obtains the desired bases by completing them with vectors of the kernel
subspaces. We then have
B = SPLU'TY,

(3.24) . .
B' = TUTP'S,

where U and P are the matrices formed from the column vectors v; and ¢; and
¥ is the M x N, pseudo-diagonal matrix containing the y; on its main diagonal.

In problem (3.22), zero eigenvalues correspond to eigenvectors lying in
Ker B*, We shall now see that the inf-sup condition is related to the behavior
of the smallest nonzero eigenvalue. This eigenvalue is nothing but kj and must
remain bounded away from zero when the dimensions of the spaces increase.
We shall in fact prove:

Proposition 3.1: Let k5, be defined by (3.14) and let pmin = gt be the smallest
nonzero singular value of B, as defined by (3.20) and (3.21). Then ky = tmin.

Proof: Let us first remark that (3.14) can be written as

b
(3.25) inf sup LGN kx.
me(KerB)L vye(Ker Byt [lUallv]ianlio

Let us write as in (3.6) and (3.7), va = Y. &; vix and g» = >_; B; gin, but
taking now for v;, and ¢;5 the elements of V), and Q) associated with the
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vectors v; and g; solutions of the eigenvalue problems (3.22) and (3.23). Then
vy € (Ker BL)1 and g» € (Ker By)* . One has moreover

b(vh-Qh) = (Bv1q>lRM = (Z O!,‘BV,', ZﬁJ q?)

(3.26) , ' ’

S
k=1

by the S orthonormality of the q; and Bv; = u; Sq;. Moreover we have

.
(3.27) llonllys, =3 _of,
i=1
r
(3.28) llanlld, =D A7
j=1
We want to evaluate
. Dotk g By
(3.29) infsup —ZFeF—cex = kj.
R VO AVOIY
There is no loss in generality in taking |lun|| = {lgn|| = 1. Then the supremum

in ay is then clearly attained for ay = g Bk(3° pi B2)~'/? and its value is

Ve ,uz ,BE. This is clearly larger than gimin. The minimum value is gynin =
iy, taking A, = 1 and all other coefficients zero. 0

Remark 3.1: We have in fact for the singular value a generalized Rayleigh’s
quotient with

(Bv,q)

VTV, v) V{59, 9)

and other singular values corresponding to other extremal values.

(3.30) min = infsup
v q

In particular, we have

(3.31) 0l = sup s (Bv,q)

u .ad
4 Vv, @

An interesting special case of the above result arises when one can identify the
matrix T, associated with the scalar product on V), and matrix A defined by
(3.2). This is the case when a(-, ) is continuous and coercive, thus defining on
Vi a scalar product and hence a norm, equivalent to the standard norm. From
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(3.22), the u? are now the eigenvalues of the dual problem (3.12) and we have
a result on the condition number of this problem (FORTIN-PIERRE [A]) which
is now given by

(3.32) Cond(BA™'B*) = ]

kmm

and will vary, following the dependence of }|b|| or kmun on h.

The above analysis also allows us to give a closer look to the structure of
the problem and the importance of the inf-sup condition for convergence.

I1.3.3 Is the inf-sup condition so important?

One of the most frustrating things in the analysis of mixed finite element methods
is often the apparent discrepancy between experience and theory. To quote
FORTIN [D], “Computations were done (with success!) using theoretically
dubious elements or at best, using elements on which theory remained silent.”
This is specially the case for Stokes problem of Chapter VI where velocity
results are generally quite good, even with elements not satisfying the inf-sup
condition, whereas reasonable pressure results can often be recovered after a
filtering posttreatment of the raw results. The singular value decomposition
introduced above allows us to get a better understanding of those disconcerting
behaviors.

Let us go back to the matrix form (3.9) of our problem, which we shall
now rewrite, using the fact that there exists a basis of V} and a basis of @,
such that matrix B takes the pseudo-diagonal form:

pr - - - 0 -0
< gy - - 0 -0

(3.33) B= e 0 - 0],
6 - 0 -0
o - 0 -0

where we suppose that the singular values pu, are written in decreasing order. The
solution of our problem will depend directly on the behavior of those singular
values in a way which we shall now try to describe. Let us first note that in
(3.33), columns of zeros (i.e., j > 7) , correspond to the kernel of B whereas
rows of zeros correspond to the kernel of of B*. Rows of zeros imply that it is
possible to solve Bu = g only if g takes the form

g1
g2

(3.34) g=1|9 |,
0
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that is, g has no component in Ker B®. We have already discussed the impor-
tance of the dimension of Ker B*. If this dimension happens to be larger than
the dimension of the kernel of the corresponding infinite-dimensional operator,
we have spurious zero energy modes in p which imply artificial (nonphysical)
constraints on g.

Another important point is the dimension of Ker B, that is, the number of
zero columns. In order to get a good approximation of the infinite-dimensional
kernel, this dimension should grow when the number of degrees of freedom
increases. Whenever this growth is not occurring properly, we shall have a
locking phenomenon, which may be total, that is,

(3.35) Bu = 0 implies u = 0,

or partial, u being restricted into too small a subspace. This will happen when-
ever the space (), is taken too large, thus overconstraining the solution. From
Proposition 2.5, such a situation implies that some of the singular values p, will
become vanishingly small when the mesh size decreases.

To complete our picture, we shall now divide the singular values of B into
three sets, writing

T, 0 0
(3.36) B=|0 %, 0],
0 0 0

where £ contains the “stable part of B” (i.e.,iu, > ko > 0), X5 contains singular
values vanishing when h gets small, and the zero singular values correspond to
Ker B*. We can now write system (3.9) as

Ay A Az B 000 ug h

Agg Azp Az 0 Xy 0 U fa

A3y Asx Az 0 0 0O us [ _ | fa

3.37) p% 0 0 0 0 0 n| 1o
0 hIPS 0 0 0 0 P2 g2

0 0 0 0 0 0 p3 93

If we want to solve (3.37), we must first have g3 = 0, leaving p3, the component
of p in Ker B?, indeterminate. As we have already discussed, this condition may
imply artificial constraints if Ker B® is too large: they could then eventually be
verified by suitably modifying thc data. The question is then whether this can
be done without losing precision. Supposing that this point can be settled, we
can now proceed in (3.37) to solve for uy, us, and ugz,

u = X7 gl,
(338) Ug = 22—192’

-1 -1 -1
uz = Agzy — Az uy — Azp ua.
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The potential trouble obviously lies in u, which depends on the inverse of
the unstable part ¥,. Again, if g2 is null (or sufficiently small), up will be
null (or negligible) whereas u; and us will behave correctly. This can happen
because we can set go to zero without loosing precision or because “normal
data” contain only a small g, component corresponding, for example, to “high
frequency components” which are small for regular functions. In such a case,
one can expect reasonable results even if the inf-sup condition is not satisfied
and B contains an unstable part X,.

Finally, uy, us, and uz being known, we get from (3.37)

(3.39) p1 = =57 (Al u + Ao’ + A us — f),
py = —22_1(/12_11111 + AZ_ZIUZ + A2—31U3 - fZ)

Here p, depends on the inverse of the unstable part 2, in fact, from (3.38), on
¥ if g, is not zero. Even for g5 = 0, p, cannot be expected to be correct but
p1 will then remain stable. If this stable part of p is rich enough to approximate
the exact infinite-dimensional solution, filtering out p, will yield good results.
This is indeed what happens in many situations. One may however think that
relying on such borderline conditions is likely to lead to unreliable results at
times.

The complete analysis of an approximation should therefore identify how
well a “normal problem™ can be approximated by the “good part” up, uz, pr
of the numerical solution. This would imply the knowledge of the singular
decomposition, which is a rather strong requirement. We shall present in Chapter
VI an example where this can partly be done. We also refer to Section V.6 where
the role of “coerciveness on the kernel” and the inf-sup condition are discussed
on a simple example.

1.4  Solution by Penalty Methods, Convergence of Regularized
Problems

We now describe a procedure that is gaining more and more popularity for the
numerical solution of some saddle point problems, specially the Stokes problem
described in Chapter VI. The method is general and we believe it is worth
presenting it in an abstract setting.

The main idea is very simple and is quite classical in the theory of mathe-
matical programming. Let us suppose we want to solve a constrained problem

(4.1) Jnf J(v),

where K is a closed convex subset of the Hilbert space V. Then we can
approximate this problem by the unconstrained one

. 1, .
4.2) U]g‘f/ J(v) + gd (v, K),
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where d(v, K) is the distance in V' from v to K. It can be proved, under fairly
general assumptions, that the solution u of (4.2) converges in V' to the solution
u of problem (4.1) when ¢ becomes small. This apparent simplification has to
be paid: problem (4.2) is generally harder to solve when ¢ is small due to the
ill conditioning of the functional

Je(v) = J(v) + édz(v,f().

Let us apply this to problem (3.8). When A is a positive definite symmetric
matrix, this system is equivalent to

w 1 {1400 - 1)

where (-, -) denote the standard Euclidean scalar product in IRN. Then let S be
any positive definite matrix in I2"¥. We can replace (4.3) by

4.4 ir;f{%(Av,v)—{——QIE(S_I(BU—g,Bv——g)—(f,v)}

or equivalently, writing p. = (1/¢)S~1(Bv — g¢)

{ Au. + B'p, = f,

4.5
-5 Bu, — g = eSp,

which is nothing but
1 1
(4.6) Aug—{—gBtS"lBue :f—l—EBtS_lg.

If the matrix S is “easy to invert” (in particular if S~! is a sparse matrix, by
preference block diagonal), this provides a way to reduce our problem to a more
standard quadratic unconstrained problem. This is a widely used technique and
it is indeed quite efficient. One should however be aware that the penalty term
1/e B'S~!B has a strong negative impact on the condition number of the linear
system (4.6).

Using a penalty method is, for instance, almost impossible if an iterative
method is used for the solution of the linear system (4.6), iterative methods
being is general quite sensitive to the condition number of the matrix at hand.

We now consider the problem of estimating the effect of changing a problem
with constrains to a penalized problem. We shall place ourselves in a general
setting that can be applied as well to a finite-dimensional problem as to an
infinite dimensional one. The result obtained will also show how the solution
of a problem depending on a parameter may converge in some cases to a limit
problem of mixed type. We therefore consider a problem of the form

{a(ue,v) + b(v,p.) = (f,v), Vv eV,

“.7) b(rte, q) — ((pe,9)) = (9,0}, Vg € Q.
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If S:Q — @, denotes the canonical isomorphism associated with the scalar
product ((-,-))¢q, this problem can be written as

1 1 -
(4.8) a(ue,v) + E(BU,S_IBUE)QIXQ ={(f,v)+ E(BU,S lg)Q,xQ.

If the space Q is identified to its dual space ', we then have S = I and (4.8)
becomes

(4.9) a(ute,) + <((Bue, Bo)q = {f,0) + 2((9, o).

A problem as (4.9) can thus arise from a penalty method applied to a constrained
problem. We are then interested in knowing whether the solution of the penal-
ized problem converges or not to the solution of the true problem. It is also
possible that (4.9), usually with g = 0, represents a physical system in which a
parameter becomes small. This is the case for example in nearly incompress-
ible materials (Section 1.1 and Section V1.7). In this case we are interested in
knowing the relation between the solution of (4.9) and the solution of the limit
problem which has the form (1.5).

Both these questions are indeed solved by the same analysis. The assump-
tion will be as usual coerciveness of a(-,-), that is

(4.10) a(v,v) 2 a |bll},
and the closedness of Im B in @', that is,

b(v,
(4.11) sup _(__q) > ko ||q0[|Q/ Ker B! -
vev ||vllv

We now prove (BERCOVIER [B], ODEN-KIKUCHI-SONG [A]), ODEN-
JACQUOTTE [B].

Proposition 4.1: Let ¢ € Im B, then solution of problem (4.7) converges
strongly when ¢ — 0, in V x @ to the solution (u,p) of problem (1.5) with
p € (Ker B*)* provided (4.10) and (4.11) hold. Moreovere there exists a con-
stant depending only of f and g, kg, a, and ||al| such that

(4.12) [lu —u]lv < ce,
_ c

@13) o= pelio < =
0
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Proof: Substracting (4.7) from (1.5) we have

a(u — ue,v) + b(v,p — pe) = 0, YvelV,

(414) { b(u — UE)Q) + S(('U,P —P:))Q = ((p; Q))Q’

Yge V.

Then we apply Theorem 1.2 and we get the result. O

Remark 4.1: This result can of course be applied to a discretized problem.
The reader should notice that discretizing a penalized problem is not in general
equivalent to penalize a discrete problem. In this last case a choice of spaces
Vi C V and Qn C Q is explicitly done and the penalty method is to be
considered as a solution procedure. Discretizing the penalized problem is in
general equivalent to choosing @ = BV}, which is in general a poor choice.
Reduced integration penalty methods have been introduced to circumvent these
difficulties and their equivalence with mixed method will be discussed in Chapter
VI in the context of Stokes problem and in Chapter VII for moderately thick
plates a la Mindlin in the slightly more general setting discussed below. In
general, a discrete penalty method will take the form

(4.15) a(uh,vh) -+ é((IBuh,IBUh))Qh = (f,vh),

where [ is an operator from @ into Q. In the context of Remark 2.15 this can
be seen to be equivalent to the perturbed mixed problem

a(up,vp) + bp(vn, pr) = (f,vn),
416 { bn(un, gn) — €((Pa, an))gs =0,

where bu(va,qn) = ((IBva,qn)) = ((Bvn,qn))a. Whenever [ is not the
projection operator on (4, a consistency error is introduced that has to be taken
into account by the method of Section 11.2.6. O

Remark 4.2: Proposition 4.1 can be extended to the case where the bilinear
form a(-,-) is coercive only on Ker B, that is,
a(vg, vg) > o [|vgl|?, Yvo € Ker B.

Indeed one still has the estimate (4.12) and we must then show that p is bounded.
But this will be true by applying Proposition 2.11 to problem (4.7). O

Let us now consider the case already discussed in Remark 1.13, that is a
regularization of our problem by a scalar product ({-,-))w in a dense subspace
W — . Depending on which space is identified to its dual space, we shall
meet cases where W — Q@ = @' — W’ orwhere Q' - W = W' — Q. In all
cases the solution of a problem in @ is approximated by the smoother solution
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of a problem in W. We suppose as in Remark 1.13 that a(-,-) is coercive on V
but this condition could probably be relaxed.
We thus want to compare (u,p) € V x @ solution of problem (1.5) and
(te,pe) € V x W solution of
b ) = ) ! )
@17) {a(UEyU)+ (ve,p) = (£, v)vixv
b("e;‘l)_ce(Ps,Q) :<grQ)Q’XQ) qu VVJ

where ¢, is equivalent to ¢ times the scalar product on W that is, it satisfies
(1.44) with A = ¢ and when ¢ € Q' is supposed to lie in Im B, which is closed
in @' but not in W'.

Using the bound of Remark 1.13, one gets
(4.18) llwellv + 1pello/ ker e < e (1fllve + ligller),
and we can prove the following proposition.

Proposition 4.2: The solution of problem (4.17) converges strongly in V' x
Q/ Ker B*, when € goes to zero, to the solution of problem (1.5).

Proof: Weak convergence is obvious by the usual extraction of subsequences
and by uniqueness of (u,p). To prove strong convergence we use the standard
trick and write

(4.19) a(u—ug,u—u.) = a(u,u) — a(us, u) — a(u, ue ) + alue, ue).
Using (4.17) this can be written as
alu — ue,u —ue) = aly, u) — alue,u) — alu, v ) + {f, u.)
—{9,P¢) — ce(pe,pe)

and thus by the positivity of ¢. (-, )
(4.20) a(u —ue,u—u) < alu,u) —alu.,u) —a(u,u.) + (f,u.) — (g, p:)-

But weak convergence and equations (1.5) show that the limit of the right-hand
side is zero. Thus by coerciveness of a(+, -}, we have ||u; —ul|y — 0. Moreover
one has

a(u — u.,v)+ Wv,p—p:) =0
and hence
ko llp — pellq < llall flu — ue|lv

and the proof is complete. O
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Remark 4.3: This result applies, of course, to the case W = . It is then a
special case of Proposition 4.1.

The problem that remains is to get an estimate on ||u — u.{|y and
llp — pello. We now prove

Proposition 4.3: Let (u,,p.) € V x W be the solution of problem (4.17) and
(u,p) € V x @ be the solution of problem (1.5). We then have

@20) (Ju=wally +llp=pelloskerne) < ¢ inf [l = pullo+ VE lipullw].

One easily sees by substracting (4.17) and (1.5) with ¢ € W that one has

(422) {(I(U——ue,v)—}—b(v’p_pe) :0, Yv € V,

b(“*us,Q)ch(PE,q), VQEW.

The argument of Proposition 4.1 cannot be applied for it would require (in
(4.22b)) ¢ € Q. However let p,, be any clement of W. We rewrite (4.22) as

(4.23) { a(u — ue,v) + b(v,pw —pe) = b(v,pw —p), YV EYV,

b(u—ue,q) — ce(Pw — Pe,q) = —Ce(Pu,q),  VeEW.
We can now use estimate (1.44) with {g2,¢) = ¢. (pw,q) to get
@24)  lu—welly +llpw — pellh xer e < € (Ipw — plIG + € lIpwlliv)-

From the triangle inequality and the arbitrariness of p,,, one deduces (4.21). 0

Remark 4.4: The above result is not optimal. It does not for instance reduce
to Proposition 4.2 when W = Q. Let us suppose however that there exists a
space W, dense in W (and hence in ) such that

(4.25) le(Pw+,‘Z)[ <ee “Pw+“W+ HQHQ/KCIB‘a VeeWw.

W, is then a space of more regular functions. From (4.23) and (1.47) taking
NOW Py = Py, and g2 = 0, {g1,9) = ¢ (pw,,q), onc obtains

@26) (lu=uellv +lp=pello/kern) S ¢ (|_inf, llo=pu, la-+e llpw, lw.)
wi

and this is now optimal for W, = Q.00
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Remark 4.5: We remark that the right-hand side of (4.26) can be bounded
in term of ¢ whenever p is more regular. Precisely let us suppose that p €
[W+,Q]9’% for 0 < 6 < 1, then one has

(4.27) inf (llp = puyllo + ¢ lIpuyliw,) < co € llplls-
pw+ew+

The space [W.*.,Q]g'% used here is an interpolation space between W4 and Q.
We refer the reader to BERGH-LOFSTROM [A] where inequality (4.27) is
proved in Theorem 3.12. In particular if W, = H'(Q) and Q = L*(Q) we

have (W, Qlp 1 = HY(Q).O

Remark 4.6: Stabilization by a penalty method.

In the estimate of penalty error presented above, we have supposed that the
bilinear form b(v, ¢) satisfied the inf-sup condition and we did not distinguish
between discrete or continuous problems. It must however be said that penalty
methods are sometimes used, on discrete problems that do not satisfy the inf—
sup condition, as a stabilization procedure. We shall meet such a situation in
Section VL.5. It is however worth to introduce the idea in a general setting.
Suppose that problem (2.1) is replaced by

{ a(u)vh)+b(vhyph): (fl vh);
b(w — up,qn) — €((Prran))q = (9, 9n)-
Substracting from the continuous perturbed problem (4.7) we get
{ a(u — up,vn) +b(va,p— pa) =0,

b(u — un,qn) —&((p — pr,an))g = 0-

(4.28)

(4.29)

By standard techniques and without using the inf-sup condition we can easily
get the estimate

llun —ully +ellp—pallg < inf

(4.30) vhEY .
inf [(1+¢ — .

+ ¢z thth[( +¢) llen ~ pllg

1
o = wlfy, + ~llon = ]

The presence of the 1/¢ term on the right-hand side forbids ¢ going to zero.
However taking ¢ to be a function of h leaves a downgraded but simple error
estimate. We shall use in Section VL5 a variant of this procedure that will not
cause a loss of accuracy at least for low-order approximations. [1
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IL5 Iterative Solution Methods. UZAWA’s algorithm

To conclude this section we present an iterative algorithm, namely Uzawa’s
algorithm that is quite efficient in the solution of problems of type (1.5) when
the operator A associated with a(-, -) is invertible. In this case, we have already
seen that u can be eliminated and we get, in matrix form, problem (3.12). The
matrix BA~!B* that appears in this problem is positive semi-definite and is
well suited to a solution by a descent method such as the gradient method or the
conjugate gradient method. Moreover, in many important cases, the condition
number of BA™!B' will not grow as the discretization mesh is reduced so
that convergence properties will be independent of the mesh, which is a very
desirable feature. We refer to FORTIN-GLOWINSKI [B] for more details and
convergence proofs of the algorithms described below that are nothing but a
gradient method applied to (3.12) or a variant of (3.12). Multigrid versions of
the method can also be found in VERFURTH [B].

11.5.1 Standard UZAWA’s algorithm

A — Let p° be chosen arbitrarily,

1

B — p” being given, find v"*! solution of

(5.1) a(u™* v) = b(v,p™) = (f,v), Yv eV,

C - compute p™*! using with p small enough

62y ("' -p", ) =plb(x*,9) - (9,9)], VeeQ,

D - stop whenever ||p"*! — p"||¢ is small enough, otherwise go to
step B. O

Although this algorithm behaves well by itself, it is specially well adapted to
being used in conjuction with a penaly method. In this case it can be considered
as a way to eliminate the penalty error and to obtain the true solution of the
underlying limit problem. This extension of Uzawa’s algorithm is called the
augmented Lagrangian algorithm and it was introduce by HESTENES [A] and
POWELL [A]. Its properties are discussed in details in FORTIN-GLOWINSKI
[B]-

I1.5.2 Augmented Lagrangian algorithm

A - Let p° be chosen arbitrarily,

B — p" being given, find «™*!, the solution of
(5.3)

a(u™tl v) + é(S_lBu"“,Bv)QIXQ = (f,v}+ é(S"Ig,Bu), YveV,



1

C — compute p"*! using with p < 2/¢

(5.4) (" =" ) =p b(x" )~ (9,9)], VeeEQ.

D - stop whenever |[p"*! — p”||q is small enough, otherwise go to step B. O

Remark 5.1: Using in (5.4) the value p = 1/¢ which is very close to the
optimal value for £ small, one can rewrite (5.3) and (5.4) as

a(u™H,v) + b(v,p ) = (f,0),  VwEV,

5.5
) {b(U"“,q) —e (P - ))e =900, VeeQ.

Taking p" = Q, this is the standard penalty method and for ¢ small, p**+! is a

good approximation of p. In general two or three interations of (5.5) will be
sufficient to completely eliminate the error due to the penalty term. [

The augmented Lagrangian algorithm is a powerful tool for the numeri-
cal solution of Stokes problem (Chapter VI). It has also been applied to a large
number of mixed problems under names or forms that are sometimes hard to rec-
ognize but nevertheless equivalent. It is also worth noting that it may converge
even for a(-,-) being coercive only on Ker B as long as the matrix associated
with (5.3) is invertible. This will be the case for instance if a(v,v) > o ||v|i}
as in Section I1.2.5.0

II.6  Concluding Remarks

We tried to present in this chapter the basic facts that will serve throughout this
book for the analysis of various applications. Many cases have not been treated.
We however feel that it should enable the reader to master easily the different
extensions that can be found in the literature and even to build by themselves
the variants that would be necessary to cover new problems. Some important
problems have not been treated in our presentation. This is the case in particular
of eigenvalue problems for which mixed and hybrid methods can provide an
alternate approach. We refer to the fundamental work of MERCIER-OSBORN-
RAPPAZ-RAVIART [A] for a general analysis and also to CANUTO [A,B]
where applications can be found. Other presentations of parts of the theory
or variants are given in BABUSKA-OSBORN [B}], FALK [A], LEROUX [A],
ODEN-REDDY [A]. Another general presentation, ROBERTS-THOMAS [A]
can also be consulted for additional for references. We must also point to the
analysis of some nonlinear problems given in PIRONNEAU-RAPPAZ [A] for
isentropic compressible flows and KIKUCHI-ODEN [A] for contact problems
in elasticity. Incompressible non-linear elasticity problems have been studied,
for instance, by BERCOVIER-HASBANI-GIBON-BATHE [A], SUSSMAN-
BATHE [A], and LE TALLEC-RUAS [A].

11

Function Spaces and Finite Element
Approximations

This chapter will present some properties of function spaces that will be neces-
sary for the application of the abstract theory of Chapter II to special problems.
We also consider standard results about the finite element approximation of
Sobolev spaces and finally we consider approximations of H(div;2). The re-
sults of Section IIL.1 are technical and may be skipped by a reader interested
mostly by numerical results.

L1 Properties of the Spaces 1™ (Q) and H(div; Q)

II1.1.1 Basic results

We have already introduced, in Chapter I, the Sobolev spaces

(1.1) H™(Q) = {v |ve L*(Q), D% € L}(), |o| < m)}
where,
alely
Du = = ..
VS ST eer ey Mlmertort dan

The most important of these spaces will be for us H'(Q) (and some of 1ts
subspaces) and for fourth-order problems H2((2).

For a general study of Sobolev spaces, we refer the reader to LIONS-
MAGENES [A], NECAS [A], ADAMS [A]. It is well known that if ' = 80
is smooth enough (for instance Lipschitzian), it is possible to define the trace
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yu = ulp of u € H'(R) on the boundary T. The traces of functions in H' (%)

span a Hilbert space, denoted H'/2(T') that is a proper dense subspace of LE(Q). )

The mapping
(12 y: HYQ) — HY*(D),
is surjective and possesses a continous lifting. The norm,

= inf ,
(1.3) llyvlhyzr wel}!{l‘(mllwﬂl.n

Yw=v
is then equivalent to more standard norms on & 1/2(Q2) as defined in LIONS-

MAGENES [A]. If we use on H*(£) the standard norm [|v]]3 o = |v[§ o +1vl} o
where we have, as defined in Chapter I,

(1.4) ha= > /|D%|2 dz,

jai=m
we can write
(L.5) Nolliyz,e = o]0,
where 7 is the unique solution in I7'(2) of the Dirichlet problem,

AT+ =0,
(1.6) {

1—)1[‘ = .
We shall denote by H~1/2(T") the dual space of H'/?(T") with the dual norm

{v,v")

1.7 = i Tollar
(1.7) “ “ /2,0 ueH‘/’(F)“vHI/Q’F

where the bracket {-,-) denotes duality betwcen H~Y%(T) and HY?(T). Tt is
easily checked that one has,

(1.8) o*|—1/2,r = lI8"{l10,

where 5* is the solution of the variational Neumann problem,

(1.9) fg@df)* -gr_gdvdm+/17*v dz = (v",v), Yu € HY(Q).
Q Q
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Remark 1.1: We shall sometimes write formally, [i.v*v ds instead of (v*, v},
to denote duality between H'/3(T") and H~1/2(I). 0

We can define in the same way a trace operator ¥ on H2(Q2). It is now
possible to define v|p in a space denoted H3/2(T") but also traces of grad v]r €
(HY2(T))" and thus the jrace of the normal derivative dv/On. We then define

(1.10) HYQ) = {v|ve TY(Q),vr =0},
dv

(1.11) HY(Q) = {v]|ve HYQ),v|r =0, = 0}.0
Zip

Remark 1.2: The reader should be aware that handling Sobolev spaces H*()
where s = integer 1/2 requires some caution (LIONS-MAGENES [A]). In the
case of H'/?(T'} it is important to recall some facts. Let T’y be a part of I' ; then
¢ € H'*(T's) cannot be extended by zero outside Ty to a function in H'/?(T)
[even if paradoxically ©(T) is dense in H%(I‘o)]. Dually if I' = Ty U Ty,
one does not get the whole of H~1/?(T'y) by patching functions of H~1/%(T)
and H~'/2(T;). Unfortunately spaces H'/2(8K) and H~'/?(K), with K an
element of a partition of 2, are met very often in the analysis of hybrid and
mixed methods and one must be very careful in handling them. O

Having considered standard Sobolev spaces, we now present some proper-
ties of a space specially adapted to the study of mixed and hybrid methods.

The mathematical analysis of mixed methods will use constantly
(1.12) H(div; Q) = {q | ¢ € (L*()", div ¢ € L* ()},
with the norm
(1.13) llallGiv.0 = l2l 0 + 1div gf3 o-

It is then possible to define g ~_Tl]r , the normal trace of ¢ on T".

Lemma L.1: For ¢ € H(div,), we can define ¢ - n|r € H~'/2(T) and we
have Green’s formula,

(1.14) /diqudr+/q~g[gdvd:c:(q‘n,v), Yv € HY(Q).
a = a~ - -
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Proof: For ¢ € (D(Q))" and v € D(Q), we have the standard Green’s formula

/q-nvdo’:/diqudz—l—/g-g_rgdvd:c
r- - Q - ]

| / g-nvdo| < [lgllawallolla-
T

and therefore

Moreover the expression [, div ¢ v dz + Jq ¢ - grad v dz depends only on the

trace v|r € H'/?(T'). The result follows by density of D(Q) and (D(Q))" in
HY(Q) and H(div; ), respectively. O

The trace operator defined above also satisfies a surjectivity property.

Lemma 1.2: The trace operator ¢ € H(div;Q) — ¢ -n|r € H-Y2(T) is
surjective.

Proof: Let ¢ € H~'/2(T") be given. Then solving in H' ()
/g@deﬁ‘ggdvdm+/qSudz:(g,v), Y e HY(Q),
Q a

and making ¢ = grad ¢, implies ¢ - nfr = g. a
Let us now suppose a partition (I' = DU N) of the boundary I'. We define
(1.15) Hp(Q) = {v|veH(Q), vlp =0}

In particular, we have H{ p(2) = H3(Q) if D =T and Hg(Q) = HY(Q) if
D = (. We shall also need the space

(1.16) Mo n(div,2) = {g | ¢ € H(divQ), (g-n,v) =0, Vv € Hy p(D)}.

Remark 1.3: This space contains functions of H(div; Q) whose normal traces
vanish on N. For reasons related to pathological properties of H'/2(D) and
H=Y2(N), it is necessary to use definition (1.16) and not an expression such
as g-n|y =0in H-Y3(N). O

In particular we denote Ho(div;?) = Ho n(div; Q) when N = T'. Finally
another important subspace of H (div;£2) will be

1.17) N°(div; Q) = {q | ¢ € H(div;Q), div ¢ = 0}.

We then have
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Lemma 1.3: The normal trace operator ¢ — ¢-n|r is surjective from N°(div; )
onto {u* | ™ € HYX(T), (u*,1) =0} .

Proof: By Green’s formula (1.14) we have (¢ - n,1) = 0 if ¢ € N%(div; Q).
Reciprocally, if ¢ € H~Y2(T) is given with {g,1) = 0, we can solve in
H*(£)/IR the Neumann problem

(1.18) /n grad ¢ - grad v de = (g,4),  Vé € H'(Q),

and making ¢ = grad ¢ yields ¢ - n = ¢. 00

Remark 1.4: In applications, D will be the part of T' where Dirichlet’s condi-
tions are given, and N the part with Neumann’s conditions.

I11.1.2 Properties relative to a partition of

This section presents a short introduction to properties of some functional spaces.
We refer to RAVIART-THOMAS [A], THOMAS [B] for more details.

Partitioning €2 into subdomains is an essential feature of both standard and
non-standard methods. Continuity properties at interfaces between sub-domains
are an essential part in the definition of a finite element approximation. Moreover
we shall introduce here some notations that will be used throughout the book.

Let @ = |JI., K, be partioned into a family of subdomains. In practice,
the K, will be triangles or quadrilaterals and we shall call them elements. We
shall denote by Ty, a partition into triangles or into quadrilaterals (or for three-
dimensional domains, tetrahedra and hexahedra).

The edges of elements will be denoted e; (: = 1,2,3 orz = 1,2,3,4) in
the two-dimensional case. For three-dimensional elements we denote again the
faces of the elements by e; (1 <i <4 orl <i<6). We also denote by

(1.19) e, = 0K, NOK,,

the interface between element K; and K, and

(1.20) € = Je; JTn =K,
K

if

where T'y is the set of boundary edges or faces.
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Remark 1.5: The index h will of course be related to mesh size, that is, to the
size of elements. With an abuse of notation, we shall also use the'symbol h for
denoting the maximum diameter of the elements of the decomposition. O

We introduce the functional space

X Q)={v|ve Li(Q), vk, € HY'(K;), i}

(121) — H I[l(I(r),
with the norm

2
(1.22) ol ) = Z vlli &,
and

Y(Q) = {g]g € (LAQ)", gk, € H(div; i), Vi}
(1.23) =[] #(divi k)

with the norm

2
(1.24) llgli% cay = 2 llgllé.a-

We also consider the subspace of Y(2),
(1.25) Yo = {g] ¢ € Y(Q), qlx, € N°(div; K}, Vi}.
We shall now characterize Hj p{§2) and Hg n(div; Q2) as subspaces of X(?) and

Y (Q), respectively. Let us first remark that for v € H 1(Q) and ¢ € H(div;Q),
we have, denoting n, the outward normal to T'» = 0K,

(1.26) S (v,g-n ), = (v,g-mr

where {-,-) denotes duality between V2T, ) and H~Y/*(T,). Indeed we can
decompose the Green’s formula as

1.27) (U,Q.E)I\ZZ{/K divgw dm—}—/Krg-gIgdvdm},

and apply it inside each element. We can now state
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Proposition 1.1: Hj () = {v | » € X(Q), 3{g -n_,v)r, =0, Vg €
HQ,N(diV;Q)}.

Proof: It is clear by definition that if v € Hj ;,(€2), we have by (1.26) that
>(¢-m ,v) =0, Vg € Hon(div;Q). Let us consider the reciprocal. Using

.
Green’s formula, we get

(1.28) / vdivgdes = —Z/ grad v - ¢ dz, Yq € Ho n(div; Q).
Q - VK, - -

This implies for all g, for instance ¢ € (D(2))" ,

] 1/2
(1.29) | [vdivgdsl s (L bkx)” el

and therefore grad v € (L*(2))", thus v € H'(Q). We then have (g n,v) =
0, Yq € Hon(div;Q), so that v € Hj (). 0

The same kind of proof would yield

Proposition 1.2: Hon(div;Q2) = {g | ¢ € Y(R), 22{g-n,,v)r, =0, Vv €
H; p(@)}.0

This last result states that functions of Y'(2) belong to H(div; Q) if their
normal traces are “continuous” at the interfaces. This will be an essential point
for finite element approximations.

III.1.3 Properties relative to a change of variables

The use of a reference element, and therefore of coordinates changes is an
essential ingredient of finite element methods, whether for convergence studies
or for practical implementation. We must therefore study the effect of a change

of variables on our function spaces. We refer to CIARLET [B] for a more
complete presentation.

Let then K C IR®. We denote by 0K its boundary, by i the outward
oriented normal, by dZ the Lebesgue measure on K and, by d$ the superficial
measure induced by it on K.

Let now F' be a smooth (at least C') mapping from IR™ into IR"®. We
define K = F(K). We suppose that DF (%), the Jacobian matrix is invertible
for any & and that F' is globally invertible on K. We then have

(1.30) DF~Yz) = (DF(2))"".
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An important case is F'(£) = zq + Bé, that is, F is an affine mapping. Then
DF(%) = B is a constant matrix. We define

. IDF(E)El
(131) 1DFlloo = sup (sup = )

the norm in L (K) of the function & — ||DI"()||, that is, the matrix norm of
DF(z). In the same way we have,

(1.32) IDF~ Yoo = sup ( sup I(—Dm—)
z€K \ce R €] ;e
We write,
(1.33) J(2) = |det DF(%)|,
and for # € 8K,
(1.34) Ja(2) = J(2) |(DF™') |ge.
If (&) is a function on K, we define v(z) on K by
(1.35) v=1toF!
and we denote this by v = F(@). We then have the classical formulas
(1.36) grad v = (DF~')* grad 6 o F~' = F((DF~*)* grad %)
and
(1.37) / 3(8) dz = / o J dz,
K K
(1.38) 3(9) do = / 6 Ja ds.
aK 3K

From this, it is immediate to deduce

Lemma 1.4: The mapping  is an isomorphism from L2(K) onto L?(K) and
from H'(K) onto H!(K), satisfying,

(1.39) |u10,xs(squ(i))”2 1510 1
(1.40) ol < (inf 7)) leloc,
(1.4) e < (sup I3 )”2 1DF Lo 16l 2.
(1.42) 911, < (inf 1) IDFlls ol k- O
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Remark 1.6: If F is an affine mapping we also have (CIARLET [A])
(1.43) |[vlm x < ¢ (det BYY2 || B7H|™ |, &
and, similarly,

(1.44) |6

i S e (det BYT2IBI™ [vlm k,

where the constant ¢ depends only on m and on the space dimension n. O

In the general case, one must use the Leibnitz’s formula and the final result
is much more complex. We refer to CTARLET-RAVIART [A,C] for this analysis
which is beyond the scope of this presentation. 0

When building approximations of H(div;Q?) in Section IIL.3, we shall be
led to using the normal component of vectors as degrees of freedom. The above
transformation obviously does not preserve normal components. It does neither
map H (div; K) into I1{div; K). To overcome this problem we have to introduce
a special (contravariant) transformation known as the Piola’s transformation.

Let then DF(z) be the Jacobian matrix of the transformation F'(z). We
consider, for § € (L*(K))", the mapping

(1.45) &(q)(z) = == DF(2) §(2), r = F(z).

( )

It is then elementary to check that one has (in I?%, but the result holds for
R™)

O O 94 94
bz 8 1 FERT )
(1.46) g oy l=<on| 5% gﬁyz (DF-Y).

As the trace of a matrix is invariant by a change of variables, we have
. L. .
(1.47) divg = 7d1v q.

More generally we have (THOMAS [B])
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Lemma 1.5t Let v = 3(4) and ¢ = &(g), then

(1.48) /_q_-g@dvdr: / ¢ - grad ¢ dz,
K R

(1.49) / v-divgdz :/. ¥ div ¢ dz,
K R

(1.50) / g-nvdo :/ g-nvds, 0
aK = oK~

We refer to THOMAS [B] and RAVIART-THOMAS [A] for the proof of

this result and most of the following ones.
From (1.50) we see that & preserves the normal trace in /7 ~'/2 and enables
us to define subspaces of H(div; K') through the reference element K . More

precisely we have

Lemma 1.6: The mapping & is an isomorphism of 7 (div; K) onto H(div; K)
and of H°(div; K) onto H°(div; K). Moreover we have

1.5 lo < (inf J(f))"” 1D Pl o -
(152) lose < (sup @) " IDF o o,
(1.53) |div glo.x < (1 f J(#) ) |div gl

(1.54) ldiv dlo ¢ (sup J(x)) |div glox. O

It is also possible to obtain relations between |¢|m,x and |g|,, ; or between
|div ¢|m x and |div §|,,, 4. We refer to THOMAS [B] for details. For the sake
of completeness we shall however present the result in the case where F' is an
affine transformation and ¢ € H™ (div;2), where

(1.55) H™(div; Q) = {g | ¢ € (H™())", div g € H™(Q)}.

‘We then have

Lemma 1.7: If the mapping F is affinc and if ¢ € H™(div;Q), the following
estimates hold, with B = DF"

(1.56) lglm,x < (det B)"Y2|B=Y|™ ||| |)n %

(1.57) |div gm, x < (det B)™M2[|B71||™ |div g, -0
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The reverse inequalities also hold by a simple exchange of roles between
K and K. Such results are of course essential to the proofs of error estimates.
The Piola transformation can be extended to tensor-valued functions with similar
properties (cf., for instance, BREZZI-MARINI [A], MARSDEN-HUGHES [A]
or CIARLET [A]).

III.2 Finite Element Approximations of #!(Q) and H?(Q)

This section will be mainly devoted to the approximation of H!(f) and its
subspaces of the form H&y (). We shall however sketch the results concerning
the approximation of H2(2). Standard approximations of Sobolev spaces can
be subdivided into two classes: conforming and nonconforming methods. Even
though nonconforming methods will be studied in the context of hybrid finite
element methods, their importance makes it useful to introduce them here. We
refer to CIARLET [A], BABUSKA-AZIZ [A] or RAVIART-THOMAS [D] for
a detailed presentation of the following results.

I11.2.1 Conforming methods

Conforming methods are the most natural of finite element methods. They
yield internal approximations in the sense that they enable us to build finite
dimensional subspaces of the function space that we want to approximate.

Given a partition of the domain £, into triangles or quadrilaterals, a con-
forming approximation of H!(Q) is a space of continuous functions defined by
a finite number of parameters (or degrees of freedom).

The last condition is usually met by using a space of piecewise polynomial
functions or functions obtained from polynomials by a change of variables like
(using the notations of Section II1.1)

2.1 valgk = Do F1,

where K = F(K) and 4 is a polynomial function on K. Continuity is obtained
by a clever choice of degrees of freedom.

Remark 2.1: For triangular elements it is usual and convenient to use piecewise
polynomial functions on K. For quadrilaterals it is essential to use (2.1). It must
then be noted that vy |x is not in general a polynomial on K. This will be the
case only for affine transformations. 0

To give a more precise definition of our finite element approximations we
shall need a few definitions. Let us define on an element K

(2.2) Pr(K) : the space of polynomials of degree < k.
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The dimension of Py(K) is 3(k+1)(k+2) forn =2, and forn = 3, it is
sk + D)k +2)(k + 3). It will sometimes be convenient to define (for n = 2)

@3 PuwlE) = {pler,22) | plar,z2) = 3 i o 2h)
fES

the space of polynomials of degree < & in z; and < ks in 3. In the same
way we can define Pk, , .k, (K) for n = 3. The dimensions of these spaces are
respectively (k; + 1)(kz -+ 1) and (ky + 1) (k2 + 1)(k3 + 1). We then define

Py x(K) forn =2

(24) Qu(K) = { Py p,(K) forn=3.

We shall also need polynomial spaces on the edges (or faces) of the ele-
ments. Using the notations of Section 111.1.2, we define

(2.5) Rk(a}":): {d) | ¢ € Lz(é)K), d)lel € Pk(e;), Ve,-},

(2.6) Ty (OK) = {¢ | 6 € Re(8K) N C°(OK)}.

Functions of It;(8K) are polynomials of degree < k on each side (or
face) of K. They do not have to be continuous at vertices (or edges). The
dimensions of 12, (8K) and T (9K are respectively for k > 1:

— 3(k + 1) and 3k for triangles,
— 4(k + 1) and 4k for quadrilaterals,
— 2(k + 1)(k + 2) and 2(k* + 1) for tetrahedra.

For hexahedra, it will usually be more convenient to consider functions in Qx(e:)
in the definition of Ry (8K) and Tp(0K).

To define a finite element, we must, following CIARLET [A], specify three
things.

— The geometry: we choose a reference element K and a change of variables
F(#), and we set K = F(K).

— Aset Pof polynomials on K. For p € P we define, on K, p=po Fi

— A set of degrees of freedom I, that is, a set of linear forms {é'}1<z<dim P

on P. We say that this set is unisolvent when these linear forms are linearly
independent, i.e., the knowledge of £;(p) for all i completely defines p.

A finite element is of Lagrange type if its degrees of freedom are point values,
that is, one is given a set {at}1<a<d1m p of points in K and one defines

(27) G(p) = p(ar),  1<i<dim P,
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For the approximation of H'(Q2), Lagrange type elements will be sufficient

but approximating H?(Q2) requires Hermite type elements, that is, degrees of
freedom involving derivatives.

Remark 2.2: The reader should be aware that not any choice of points will
yield an unisolvent set of degrees of freedom. Moreover the points have to be
chosen in order to ensure interelement continuity. 0

Example 2.1: Affine finite elements

This is the most classical family of finite elements. The reference element is
the triangle K of Figure 1.1 and we use the affine transformation

(28) F(&) = 2o + Bé.

The element K is still a triangle and it is not degenerate provided det B # 0.

We now take P = P, (I&) and choose an appropriate set of degrees of freedom.
The standard choice for & < 3 are presented in Figure I111.2.

%

Figure IIL1

Py(F) Py(F) Ps(K)

Figure II1.2: Standard conforming elements

One notes that this choice of points ensures continuity at interfaces. [0
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Example 2.2: Isoparametric triangular elements

We use the same reference element and the same set P as in the previous
example. We now take the transformation F(£) such that each of its components
F} belongs to Pk(Ii’). For k = 1 nothing is changed but for £ > 2, the element
K now has curved boundaries. We present the case k = 2 in Figure IIL1.3.

" aJ
aJ

Fe(RR)" %
a a K a5
n dy
4 a, i, a, a,

Figure IIL.3: Isoparametric triangle of degree two

Using such curved triangles enables us to obtain a better approximation of curved
boundaries. It must be noted that the curvature of boundaries introduces addi-
tional terms in the approximation error and the curved elements should be used
only when they are really necessary (CIARLET-RAVIART [C] or CIARLET

[AD-

Example 2.3: Isoparametric quadrilateral elements

This is also a very classical family of finite clements. The reference element
is the square K =]0, 1[x]0,1[. We take P = Qi(K) and a transformation F
with each component in Qx(K). We present the standard choice of degrees of
freedom for k < 2 in Figure IIL4. It must be noted that we need F' € (Q1(K))?
to define a general straight-sided quadrilateral.

- A

a, d, a,
Fe(QRy’

a) The Q1 isoparametric element

Figure IIL4

§I11.2 Mixed and Hybrid Finite Element Methods 103

a 4 4 a, a,
a

a 9

dge [ [P a6

a a a, a,

b) The (J7 isoparametric element

Figure II1.4

Finally we recall that it is possible to eliminate internal nodes to get the so-called
serendipity finite elements. For instance if we take

P =Qu(K) = {55 € Qa(K), 4p(as) + 3 #(@:) =23 #(és) = 0}

= P3(K) N Qq(K)

we obtain the element of Figure IIL5

a 2\_7
E R
a a,

Figure IILS

One notices again that the degrees of freedom have been chosen in order to
ensure continuity between elements, 0

Example 2.4: Hermite type elements

Approximating H?(Q) will require continuity of derivatives at interelement
boundaries and leads to the introduction of elements in which values of the
derivatives are used as degrees of freedom. The simplest Hermite type element
is the Pj triangle of Figure III.6a.
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a) Pj-triangle b) Argyris’ triangle

e value of the function
® values of the function and its first derivative
@ values of the function and its first and second derivative

value of the normal derivative
Figure IIL6

Here the degrees of freedom are values of the function and its derivative at
vertices plus a point value at barycenter. This element does not enable us to build
an approximation of H2(Q). To do so, one must use Argyris’ triangle (Figure
I11.6b) where polynomials of degree 5 are used. (Composite elements may also
be used.) For quadrilaterals the analogues are easily built. The difficulty of
building approximations of H?(Q2) by standard methods was one of the major
reason for the introduction of various kinds of mixed or hybrid methods for
plate problems (cf. Section IV.5 or Section VIL1).

We now have to say a few words about the approximation of a given
function v by the finite element spaces just described or similar ones. We
shall not give proofs, for which we refer to CIARLET [A], STRANG-FIX [A],
CLEMENT [A].

We must first define the interpolate of v. For a general set of degrees of
freedom {¢,} on i, we define 4% by

(2.9) b(fnd) = M(8), 1<i< dim P.

The operator M must be a well-defined continuous form. When the linear
forms £, are defined by (2.5), it is natural to set

(2.10) (#a9) (@) = 9(as).

This definition makes sense only when ¢ is a continuous function which
is not the case when v € H!(Q). For Lagrange type elements in [R? or IR?,
U E }IZ(K') is a sufficient condition for (2.10) to be justified and 749 is just the
Lagrange interpolate, in the classical sense, of . For v € H(§)), CLEMENT
[A] has defined a continuous wnterpolate # using averages of u instead of
point values. This also implies a more elaborate use of reference elements. In
particular, the operator 7 is no longer defined on an element. In fact the nodal
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values of 7,7 depend on the value of 9 on the adjacent elements through an
averaging process.

Once 7,0 is defined, we can define on K,
(2.11) v = (Fa(vo F))o F~l = (#h9) 0 F~L,

We rapidly recall a few classical results. We refer the reader to CIARLET
[A] fo.r a detailed presentation. We first consider the case of affine elements,
assuming first rj, to be defined by the usual interpolate (2.10).

Proposition 2.1: If the mapping F' is affine, that is F(2) = zo + B4, and if
rhpr = pk forany py € Pr(K), we haveforv e H*(Q), m<s,1 <s<k+1

’

(2.12) v = rhvlm x < e |BTH™ |IB))* Jols k-

The proof uses (1.43), its reciprocal (1.44) and the classical results stated
below. O

Lemma 2.1: |- |z41,q is a norm on H*¥+1(Q)/P,(Q), equivalent to the standard
quotient norm. O

From this one deduces another classical result:

Lemma 2.2: (Bramble-Hilbert lemma) Let L be a continuous linear form on

H**1(Q) such that L(py) = 0 for any p € Py(). Then there exists a constant
¢ (depending on L and ) such that one has

(2.13) LO)| < e olesra. O

Results similar to (2.12), although more complex, can be obtained for
general isoparametric elements (CIARLET [A], CIARLET-RAVIART [A,C)).
Let then hg be the diameter of K. Provided some classical conditions on the
shape of elements forbidding degeneracy (CIARLET [A]) are fulfilled, relation
(2.12) can be converted into a relation involving a power of hg. For affine
elements one defines for instance

(2.14) oK = ’i’i,
PK
where pg is the diameter of the largest inscribed disk (or sphere) in K.

' We shall in the following always assume that the interpolation operator ry,
is defined by the method of CLEMENT [A], that is, by a local projection instead
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of a pointwise interpolate. This allows us to get rid of the condition 5 > 1 of
Proposition 2.1. To state this result we define

AK = {K'| K'0K # 8},

hAK: sup hKl,
K'eAK

TAK = Sup Ogr.
KenAK

We then have (CLEMENT [A]):

Proposition 2.2: If the mapping F is affine and if rape = pi for any p; €
P;(Q), then there is a constant, depending on k and m, such that for 0 < m <
5,1<s<k+1,

(2.15) Irav — vlm .k < coakhiy |vlsak. O

We then say that a family of triangulations (Ty)n>o is regular if

(2.16) ok < 0, VK € Tj, Vh.

For the geometrical meaning of this condition, we refer to CIARLET [A]. We
may recall however that (2.16) can be written as a condition on angles excluding
degenerate elements. For general curved elements there is also a condition on
the curvature of the sides.

We then have the approximation result,

Corollary 2.1: If (Tx)n>o is regular family of affine partitions, there exists a
constant ¢ depending on k& and o, such that

|rav = vlmx <eh’™™ vls,ak

2.17) SRy ~ ol 4 < cllell? o O
K

For more general partitions including general isoparametric elements, the
result is qualitatively the same: we have an O(h*) approximation provided the
family of partitions is regular in a sense to be precised.

We also refer the reader to JAMET [A] where some degenerate cases are
analyzed.

From the elements described above, we can build approximations of H*(Q)
and H?(Q). The idea is, of course, to use functions whose restriction to an
element belongs to a set of polynomial (or image S of polynomial) functions.
Let Si(K) be a subspace of Py(K). We define for a partition 7, of

(2.18) LSk, Tw) = {v | v € H*(Q), v|x € Sk(K)}.
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Remark 2.3: In the two-dimensional case, for s = 1 and s = 2, we have
£4(Sx, Tu) C C*~H(Q). although, this is not true for H*() O

We shall reduce this notation when no confusion is to be feared and write
(2.19) L =L°(Pe,Th)

when 7 is built from triangles, and Sp = P, (= the space of polynomials of
degree < k). In the same way we shall write

(2.20) Ly = £4(Q, Th)

when 7Ty is built from quadrilaterals.

We shall often use in our constructions bubble functions. For an element
K a bubble function is a function vanishing on K. Thus we say that Sy is a
set of bubble functions if S, C H}(K). We then denote

(2.21) B(Sk) = £(Sk, Th) = £°(Sk, Ti)

and we shall use the compact notation

222) B = B(P: N Hgl(K)),
By = B(Qw N Hy(K)),

when no ambiguity will be possible.

Spaces of bubble functions will be used to build enriched spaces. For
instance the space £1 @ B3 will be useful in Chapter VI for the approximation
of Stokes problem.

When approximating a standard elliptic problem, the finite element spaces
introduced up to now can be used directly in the variational fomulation of the
problem and error estimates follow from interpolation error estimates (CIARLET
[A]. In many cases, however, nonconforming methods have proved to yield
accurate (and sometimes easier to handle) approximations.

IT11.2.2 Nonconforming methods

We shall meet later nonconforming methods when studying hybrid finite element
methods. In many cases, it will however be more convenient to see them in the
frame of external approximations, which we now define.

Let us consider a variational problem (with f € V'),
(2.23) a(u,v) = {f,v)vxv, YoeV,ueV,

where V' is some Hilbert space and a(u, v) a bilinear (coercive) formon V x V.
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Suppose we can find a larger space S D 'V, such that there exists a canonical
extension &(-,-) to S x S, satisfying

(2.24) a(u,v) = a(u,v), Yu, v e V.

Moreover, let Vi C S be a family of finite-dimensional subspaces of S
such that

(2.25) v= ylxll.no vy > v EV.

V, is said to be an external approximation to V. Assuming that f can be
extended to an element f in S’, we can now approximate problem (2.23) by:
find up € Vy, the solution of

(2.:26) a(un, vs) = {f,vn)sixs, Yop € Vi,

Using standard coerciveness and continuity assumptions, one gets from (2.23)
and (2.26) a result known as Strang’s lemma (CIARLET [A], STRANG-FIX

[AD-
la(w, va) = (f,va)l

llonlls

— <e nf |Jlu—wnlls + sup
(227) ”u UhHS T vp€V “ ” vREV,
<c inf ||v— va||+ En(u,vn).

T va€W

The last term can be seen as a consistency term: it measures how well the exact
solution satisfies the discrete equation. This term vanishes when Vi C V and
we then get the standard result for the conforming case.

In classical situations we have V = H!(Q) or V = H*(Q) (or one of their
subspaces). Introducing a partition of the domain into m subdomains K., and
assuming V = H!(Q), we take § = X(Q) as defined in Section II.1.3. Any
bilinear form of the type

(2.28) / a(z) grad u - grad v dr
Q

can immediately be extended to X (£2) by writing

2.29) a(u,v) = Z/ a(z) grad u - grad v dz.
r=1 K,

We now want to find a subspace of X (), approximating H}(Q) and
such that error estimates obtained from (2.27) be “optimal”. Op.t1ma'htyils h(‘:re
relative to the degree of the polynomials from which the approximation 1s built:
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we would like to keep O(h*) estimates when using polynomials of degree k.
We are thus led to study the second term on the right-hand side of (2.27). We
shall make this analysis later in the context of hybrid finite element methods; we
shall therefore merely state the result which is quite classical (CEA [B], IRONS~
RAZZAQUE [A], CROUZEIX-RAVIART [A], FRAEIIS DE VEUBEKE [B])
and was discovered on empirical grounds and is known as the Céa-test: the

moments up to degree k — 1, of up on any interface of the partition must be
continuous, that is,

(2.30) / Up Pr—1 dS, Vpk_l € Pk_l(S)
S

is continuous across S. 0

A more general form was given by LASCAUX-LESAINT [A]. It states
that the consistency term F(u, va) must vanish whenever u € P,.(£2). For plate
problems this implies a condition similar to (2.30) for u, and its derivatives.
To fix ideas we recall a few classical examples. O

In conformity to notation (2.18) we denote by £ NC(S;,74) a noncon-
forming approximation of H!() built from functions of Sp(K). We shall
simplify this notation whenever possible as in the following example.

Example 2.4: Nonconforming elements on the triangle
Let us consider a partition of € into straight-sided triangles and an approximation
231) £V = {on | va € LX), vk € P(K), VK € Ty,

Z/M und ds = 0, V¢ € Ru(0K)}
K

It is then easy to see that the patch-test implies that the functions of Ei‘NC
should be continuous at the k Gauss—Legendre points on every side of the

triangles (Figure II1.7).

AN O WA

k=1 by k=2 Qk=3
Continuity points for nonconforming elements
Figure IIL.7
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For k odd, those points, with internal points for k > 3, can be uscd as degrees
of freedom, but for k even it is not so. For instance the six Gaussian points
of the k = 2 case lie on an ellipse and the values at these points are not
independent. It was however shown in FORTIN-SOULIE [A] that this element
can nevertheless be used in a very simple way. This was extended to the three-
dimensional case in FORTIN [B]. It must be noted that in three-dimensional
nonconforming elements, the patch-test implies in general no point continuity. a

Nonconforming approximations of H?(€2) (CIARLET [B]) have been widely
used because of the difficulty to obtain conforming elements. We refer the
reader to LASCAUX-LESAINT [A] where many examples are given. We shall
however use in Chapters VI and VII the following nonconforming approximation
of I2(Q2).

Example 2.5: Morley’s triangle

In plate problems, where an approximation of H 2(Q2) is needed, an important
nonconforming element is Morley’s triangle (Figure I11.8).

e point value
— normal derivative value

Figure I1.8

The functions v, are supposed to be in P»(K) for every K. The degrees of
freedom are point values at the vertices of the triangle and normal derivatives at
mid-side points. It can be shown by the method of LASCAUX-LESAINT [A]
that this provides a consistent approximation that will converge as O(k) in a
discrete H?($2)-norm. We shall denote by £2NC the approximation of H?()
built from such elements. [

Example 3.6: Nonconforming elements on the rectangle

We could consider a partition of € into straight-side quadrilaterals, and an
approximation of H'(£2) defined by

(232) SN= (un € L(Q), unlx, =0 F !, iy € Qu(R), (2:30) holds}.
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Here again the patch-test implics continuity at the Gauss-Legendre points of
the interfaces. It is never possible to usc thesc points as degrees of freedom.
For k = 1, the functions (& — 1)(§ — 1) € Q(K) vanishes on the four Gauss—
Legendre points of the sides that are indeed midpoints in this case. For & = 2,
the points lie on an ellipse, and so on. This explains why nonconforming
quadrilateral elements have been used so little. It is however possible to extend
the method of FORTIN-SOULIE [A] to these cases. O

The above examples are in no way exhaustive: many other nonconforming
approximations can be built and some arc indeed effectively used (LESAINT
[A], HENNART-JAFFRE-ROBERTS [A]). As we shall see in the sequel, non-
conforming methods are strongly related, and often equivalent to hybrid methods
or mixed methods. We think it is preferable to delay further examples until they
are met in a proper context.

I11.2.3 Nonpolynomial approximations: Spaces £3(¢5)

In the applications involving hybrid methods it will be useful to consider ap-
proximation spaces built from functions that have a polynomial trace on 9K but
which are not necessarily polynomials inside K. These spaces will be useful
whenever only the trace is computationally important: they can be thought of
as defined only on &, = |, 0K (cf. (1.20)). We thus define for s > 1

(2.33) LL(E) = {v| v € H'(Q), vlox € TL(OK), VK,

and for s = 0,
(2.34) L2(€h) = {v |v € L*}(€4), v|ox € Rp(IK), VK}.

For s > 1, functions of £}(@®,) are evidently approximations of H(f) at
optimal order with respect to k. It is also possible to get error estimates on the
traces.

II1.2.4 Scaling arguments

We shall briefly recall here the basic idea of the scaling arguments of DUPONT-
SCOTT [A]. We shall do it on a very simple example, but it will be clear how
the idea applies to more gencral cases. Assume that we want to prove the
following inverse inequality for elements vy, € £}: there exists a constant ¢
depending only on k and on the minimum angle 8y in 75 such that, on every
element K, we have

(2.35) loalik < chi' [unlok-

We construct first a new element K such that the mapping F : K — K is
simply given by

(236) z=hgz+b
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and K has a vertex in the origin. Formulas (1.43) and (1.44) then simply become
(in two dimensions)

(2.37) Bl g = AR [Vlm,x
and we easily get

(2.38) lonli i = [0l g < ok, K) [0l g < ek, K) hE" Jolo k-

Now we remark that c(k, K) actually depends continuously on the shape of K
(a similar argument was already used in BREZZI-MARINI [A]). In particular,
if one considers the family Ky, of all the triangles having diameter = 1 , one
vertex in the origin and a minimum angle > 8, one easily gets

(2.39) sup c(k, K) < c(k,fp)
K€K,

by compactness (DUPONT-SCOTT [A}). Hence from (2.38) and (2.39) we get
(2.40) lonl1x < e(k,00) kg |vlox,
that is, (2.35).

Note that, in this particular case, it would have been equally easy (or even
easier) to derive directly (2.35) by using (1.43) and (1.44) and a fixed K = unit
triangle. However (2.37) is easier to use and the continuity argument (2.39)
is always cssentially the same in many different applications, so that using the
scaling (2.36) actually results in a simplification. For instance one can easily
get by this method the inequality

(2.41) / onldo = hx / Jonl d5 < c(k,00) hxc [, z = c(k, 80) [onloxc-
aK aK

In the same way, one can guess, for instance, that one has

(242) l0vs/Onl|L=(ar) < c(k,00) b [vnlok,

because both sides behave like h}l in the transformation (2.36) and the inequal-
ity holds on a fixed clement of size = 1. However, Note that an inequality of
the type

lvallp=(ax) < e(k,00) lvnl1,x
is still hopeless (take vy = 1!) unless we specify, for instance, that v, has zero
mean value in K.

§1I1.3 Mixed and Hybrid Finite Element Methods 113

III.3 Approximations of H(div; Q)

Although this section is important by itself, as we shall use H(div;?) in
many examples throughout this book, its importance also lies in its value as
a model. The techniques introduced for the approximation of H(div;) can
indeed be applied to other situations and we shall meet for instance simi-
lar constructions in the discretization of the Hermann—Johnson mixed formu-
lations (Chapter VII). Our presentation does not follow the original work of
RAVIART-THOMAS [A], and THOMAS ([B] later generalized and extended
to the three-dimensional case by NEDELEC [A]. We shall rather start from an
approximation introduced by BREZZI-DOUGLAS~MARINI [B][C], BREZZI-
DOUGLAS-DURAN-FORTIN [A), and NEDELEC [B] that contains (for tri-
angular elements) the elements of NEDELEC [A] and RAVIART-THOMAS
[A]. In the case of quadrilaterals, we introduce a general element containing the
elements of RAVIART-THOMAS [A] the BREZZI-DOUGLAS-MARINI [B]
elements and the ones of BREZZI-DOUGLAS-FORTIN-MARINI [A], thus
clarifying the relation between those two. As the triangular case is simple and
more intuitive, we shall first consider it into details. Quadrilateral elements will
be treated afterwards.

II1.3.1 Simplicial approximations of H(div; K')

In this section, the element K will be either a triangle (n = 2) or a tetrahedron
(n = 3). We still denote e, (: = 1,2,3 or i = 1,2,3,4) the sides (or the faces)
of K.

Following BREZZI-DOUGLAS-MARINI [B] (for n = 2) and BREZZI-
DOUGLAS-DURAN-FORTIN [A] (for » = 3) we now introduce, to approxi-
mate H(div; K), the space

3.1) BDM(K) = (P (K)".

The dimension of B DM, is thus

(k+1)(k+2) forn =2,
%(k +D(k+2)(k+3) forn=3

For ¢ € BDM,(K), we evidently have div ¢ € P,_1(8K). Moreover, the
normal trace ¢ - n on 0K belongs to Rx(8K) as defined by (2.5). In order
to build from BDM, an approximation of H(div; (), it will be necessary to
ensure continuity (up to the sign) of g - n at the interfaces. This will be made
possible by the choice of appropriate degrees of frecdom. Indeed we have

(3.2) dim BDM; = {

Proposition 3.1: For k > 1, and for any ¢ € BD M, the following relations
imply ¢ = 0.

3.3) / g nprds=0,
a

g Vpi € Ri(0K),
K
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(34) / q-g;a_ldpk_ld:c:O, Vpr—1 € Pk_1(1<),
e

(3_5)/ q'¢k dr = 0, V?k c {_qéke(Pk)" |divgk:0, fk'ﬂlaK:U} =&,
IR a4

Indeed, it is easy to check that (3.3) and (3.4) are equivalent to ¢ € P, since
we may write

(3.6) /diquiquz:—/q-g@ddivgdr+/ g-ndivgdo

K - - K~ 8K
Thus (3.3) and (3.4) imply div ¢ = 0. Reciprocally, it is trivial that (3.3) and
(3.4) hold for ¢, € Di. g

To prove that (3.3),(3.4), and (3.5) can be used to define degrees of fre?dom
for BDM, by choosing bases for Rx(0K), Px—1(K) and <‘I>k, there remains to
check that the set obtained from (3.3) and (3.4) is linearly independent, that is,

Lemma 3.1: Let g € R (9K) and f € P,_1(K) such that
3.7 / gq-nds—{-/ q-grad fde =0, Vg € BDM(K),
aKk  — K~
then g = 0 and f = constant.
Proof: Using the change of variables (1.45) and Lemma 1.5, it is sufﬁciem' to
prove the result on the reference element (Figure TIL9). We give the construction

for n = 3 as the case n = 2 is a simple restriction of it. One first uses in 3.7,
A4 being the fourth barycentric coordinate (thatis, Ay =1—z —y— z),

af af _ af
Q= 1?5;/\4, gz = yg;)uh g3 = ZE’\AL
“ oo
©4 (0,1,0)
y
(1,0,0)
Figure IIL9
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Then ¢ - nlsx = 0 and we get from (3.7)

3.8) /}([m(%)2+y(%§)2+z(g—£)2}/\4 dz =10

which implies grad f = (0 as all terms in the integral are positive. We now take
q1 = TPr-1, 92 = ¢3 = 0. From this comes f“ zg pr-1 ds = 0. In the same

way we get f, yg pr-1ds = [, zgpr-rds =0andasz+y+z=1on
ea, J,, 9 pe—1 ds = 0. All these conditions imply gl., = 0. Finally we take
¢ = gl., = g, and (3.7) implies 3_7_, [, (9:)* ds = 0, hence g = 0.0

Let us now count the number of conditions thus induced:
(3.9)

Le2 4 Tk +4 forn=2
dim R(9K) + dim Py (K) —1 = { gka : 151:; + 38k +18 forn=3.
From this we can deduce, by standard arguments of linear algebra,
(3.10)
3k(k—1) =dim Pe_o(K) forn =2, k > 2,

dim [( Px_2)%]—dim (Ps-3),

n=23 k>3,
dim [(Pk_z)a], n=3, k=2.

dim <I>k=
13k3 -3k~ L(k—2)(k—1)k=

In the two-dimensional case, the space ®; can easily be characterized.

Lemma 3.2: For n = 2, we have,

(3.11) @, = {9, | ¢, = curl b pr_2, pr—2 € Pe_o(K)},

where bg = A1 AyA3 € B3(K) is the bubble function on K.

Proof: Any ¢, € @ is the curl of a polynomial of degree k + 1. A simple
count of degrees of freedom terminates the proof. I

In the three-dimensional case, the construction of ®;, is less direct. It is still
true that ¢, € @ implies that ¢, is the curl of a vector function polynomial
of degree k + 1. However this representation is not, in general, unique and it is
not so easy to explicit a basis (NEDELEC [B]).

One must however make two remarks. First it must be noted that building
a basis for ®; is a simple problem of linear algebra, that is, building a basis
for the kernel of a linear operator. If one really needs it, such a basis can
be built by a simple procedure based on Gaussian elimination. But one must
also say that the degrees of freedom described above have mainly a theoretical
importance for instance in building an interpolation operator for proving the
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inf-sup condition. In practice, as we shall see in the applications of Chapter IV
and V, any basis of (Px)" will be convenient and standard degrees of freedom
can be used.

Although the spaces described above may seem quite natural, they were
not, by far, the first approximations introduced to approximate H (div;2). Other
possibilities exist and we shall see later how they are related to the previous
one. Therefore, we now introduce the approximations of RAVIART-THOMAS
[A]. We first consider the case of affine triangular or tetrahedral elements and
we use the definition introduced by NEDELEC [A].

Let K be an n-simplicial (triangular or tetrahedral) element. Then we
define

(3.12) RTL(K) = (Pe(K)Y" + zPe(K).
It can easily be checked that the dimension of RT(K) is given by
. (k+ D)(k+3) forn=2
3.13 dim RTx(K) =
(3.13) im T3 (K) {%(Ic+1)(k+2)(lc+4) forn =3,

and that only the part of z P« (K) involving homogeneous polynomials of degree
k is important. We now prove some basic result about RT}, spaces. These spaces
have indeed been tailor designed in order to satisfy the properties we now state
in the following proposition.

Remark 3.1: The original work of RAVIART-THOMAS [A] used an expres-
sion equivalent to (3.12) on the reference element K and defined RT: () by
the change of variable & of (1.45). It must be noted that this definition is not
cquivalent to the definition of RT,(K) given above: it depends on the orien-
tation of space. For triangular elements, definition (3.12) is more natural and
easier to handle. 00

Proposition 3.2: For any n-simplicial element K we have forg € RT:(K)
div ¢ € P(K),

(3.14) g€ Plf,
q-nlox € Re(0K).

Moreover, the divergence operator is surjective from RTy(K) onto Pr(K).

Proof: ¢ € RTy(K) can be written g = ¢, + Pk with ¢, € (Px(K))". Ttis
then clear that div g is a polynomial of degree k. This proves the results about
div ¢. On the other hand let n = {n1,n2} be the normal to a side (we consider
the two-dimensional case for simplicity)

g-n=go-n+pe(eini + rany).

But on a side we have zin; + xgnz constant so that ¢ - » is a polynomial of
degrec k. The same argument holds in IR® (or in I2*). O
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We also have,

Pro%osition 3.3: For k > 0, and for any ¢ € RTj}, the following relations imply
g="u

(3.15) _/3}(2 "1 Pk ds= 0, Vpk S Rk(af{),

(3.16) /Kg-gk_l dz =0, Ve, _; € (Pe-1(I)™.

This is a variant of Proposition 3.1 and the proof is left as an exercise. 0

Let us now define
(3.17) RT{(K) = {q € RT}(K) | div ¢ = 0}.

From (3.12), we can easily deduce

Corollary 3.1: RTY(K) C (Py(K))".0O

Therefore RT;(K') and BD M (XK) contain the same divergence-free vec-
tors. We then have

Corollary 3.2: Forn = 2, any ¢, € RTY(K) is the curl of a stream-function

¥ € Pry1(K). The dimension of RTP(K) is equal i
qual to (dim P, K)y—-1)=
L+ 1)(k+4).0 (dim P () = 1)

. The above result has been extended by NEDELEC [A] to the three-dimen-
sional case using

(3.18) H(curl ;) = {¢ | ¢ € (LX), curl ¢ € (L*(Q))"}.

In the th.ree-dimensic.)nal space, H{curl ;@) will need special approximations,
whereas in the‘two-dxmensional case, approximations can be built from RT} or
BDMy by a simple rotation of 7/2, as we shall see in Chapter VIL

- Propositions 3.2 and 3.3 imply that one can use as degrees of freedom for
ke

— the moments of order up to k of ¢ - n on the sides or faces of K;

— the moments of order up to ¥ — 1 of ¢ on K.

Before stating approximation results, we consider a few examples.
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Example 3.1: The spaces RTy, RTy, BDM,

From the results above, we know that RTj is a space of dimension 3 containing
polynomials of the form
1o ot =aen
G 2(z,y) = b+ cy.

We can specify it by the three normal components of ¢ on 0K as ske.tched in
Figure 111.10. Space BDM; is of dimension 6 and RT} is of dimension 8. It
must be noted that div BDM,; = div RT, = Pp. If one considers the subset of
BDM; such that ¢ - n|ax € Ro(0K), one easily sees that the resulting space
is RTy. In the sar—neTNay, BDM, is the subset of RT; such that div ¢ € Py
instead of P;.

1 ' {
a) R1p b) BDOM, o KTy
Figure IIL10

Example 3.2: Spaces BDM, and BDF M,

The space BDM,(K) is twelve dimensional. It is defined by nine boundary
degrees of freedom and three internal ones (Figure I11.11) derived frorp (3.3)
through (3.5). It is then possible to restrict g - n to belong to Rl(B.K ) 1nstee}d
of R2(0K). The reader may check that Proposition 3.1 would still be valid
with the appropriate change of (3.3). This space is then closely related to the
Raviart—Thomas space RTj(K), with, however, one more degree of freedom.
We denote it BDF M, as it is the triangular analogue of the reduced clement
introduced in BREZZI-DOUGLAS-FORTIN-MARINI [A]. O

E -1 n

a) BDM,

e

by BDF M,
Figure IIL11
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This last example was indeed quite general: restricting ¢ € BDM(K) to have
a normal trace in Rx_1(9K) yields a space larger than RT3 (K), but having
essentially the same properties, that we denote BD I M} (K'). For the triangular
case we thus have the following inclusions between the spaces just defined:

RIy C BDFM, C BDM, C RT, C BDFM, C BDM, C RT>.

The spaces BDM(K) are in a sense more natural as they use a full set of
polynomials instead of (3.12). It must, however, be stated (cf. Chapter VII)
that spaces RT, (K} are more suited to certain problems, specially in elasticity.

Example 3.3: Three-dimensional elements: RTy, BDM,, RT}

The simplest cases of three-dimensional elements are depicted in Figure [11.12.
Their properties are exactly the same as in the two-dimensional case.

v -

£

b) BDM; o RTy
Figure I11.12

1I1.3.2 Rectangular approximations of H(div; K)

We now consider the extension of the previous construction to rectangular ele-
ments and through the change of variables (1.45) to general quadrilaterals. In
the present case, the use of a reference element is essential and we shall build
our spaces on K =] — 1,+1[* . Contrarily to the simplicial case, it will be
simpler here to first introduce the approximations of Raviart and Thomas. The
extension to the three-dimensional case is again due to NEDELEC [A].

Let us thus define, as in the previous section,

(3.20) Ry = (Qr)" + 2Qk.
It can be checked that one has

P P forn =2
(3.21) RTyy = { ke X k1 orn

Piyikk X Peggtk X Prrpsr forn=3,
and that

20+ 1)(k+2) forn=2

3.22 dim RTjy =
22 1 ) { 3(k+1)%(k+2) forn=3.
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Moreover, these spaces have been defined in order to have

(3.23) divg, € Q

and

q-nle, € Pe(e;) forn =2,
(3.24) {— 2le (es

g-nle, € Qi(es) forn=3.
Defining, as in the simplicial case,
(3.25) RT[(}C] ={¢]q € Ry, divg = 0},

we have

Lemma 3.3: Forn=2,if § € RT[?:](R)» there exists ¥ € Qk.l.l(f() such that
¢ = curl . The dimension of RT{(K) is (k +1)(k +3).0

In order to choose an approximate set of degrees of freedom, we define

Pe_1 x(K) x Py p_1(K) for n=2,

26) U(K) = .
(3.26) Wi(K) {Pk_l’k‘k([()XPk,k_lyk(I()XPk,k,lc—l(K) for n=3.

We can now state

Proposition 3.4: For any ¢ € RY"[;C](K'), the relations
3.27) / ¢; gﬁ di =0, Veé; € Qrlei) forn =3, V¢; € Pi(e;) forn =2,

(3.28) /Ré-gdz =0, V¢ € T(K)

imply ¢ = 0.

For n = 2 the proof is analogous to the proof of Proposition 3.3. Forn = 3
see NEDELEC [A]. Note that, for n = 2, the sides e; are one-dimensional, so
that actually Qr(e;) = Pe(e;) in (3.27). 0

The RTj) spaces just described are based on the idea that a finite ele-
ment approximation of the rectangle should use a space of type Q. This is,
however, by no means necessary in the present case. Let us define follow-
ing BREZZI-DOUGLAS-MARINI [B] and BREZZI-DOUGLAS-DURAN-
FORTIN [A)l, forn =2, k > 1,

BDMy ={qlq¢= gk(r,y)—i»r curl (zF+1y)

3.29
(3.29) + s curl (zg¥t!), P, € (P:)*}
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and forn =3, k> 1,
k
BDMpy = {g|g=p,(=,y,2) + ) _[r: curl {0,0,zy*+* 25~}

(3.30) =0 ,
+ s; curl {yz*+1z*¥~% 0,0}

+ ¢, curl {0, zz*H1y*~¢ 0}); p, € (P)’}.

Those spaces have been carefully defined in order to have
divg e Pr_1(K),

{z-zle‘ € Pi(ex).
It must be remarked that these last conditions are rather unusual for a rectangular
approximation. We have by a simple count,
(k+1)(k+2)+2=k+3k+4 forn =2
GNCEE2CH) L 3(k 4 1) forn = 3.

For the choice of degrees of freedom, we have

(3.31)

(3.32) dim BDM, = {

Proposition 3.5: For k > 1, the following conditions imply ¢ = 0,

(3.33) / q-n Pk do, Vpi € Pi(e;),

(3.34) / q°p,_,dz =0, V_Qk_z € (Pr_p)™.
K

We prove the proposition for n = 3. The case n = 2 is a simpler variant. It is
sufficient to prove that (3.33) implies ¢ € (Py)", that is, all terms introduced
through curl vanish. Indeed, if ¢ € (P¢)", then ¢ - nl,, = 0 implies q; =
(A —2)pe—2, g2 = (1~ y")pr-2, g3 = (1 — 2%)pr_1 and (3.34) eliminates g .
Let us consider the first component ¢;. One has from (3.30)
k k
g1 =pe(2,y,2) + (i 4+ Day'zh = = 3ttty
1=0 i=0
(3.35)

k k-1
:pk(l',y,z) - ztﬂzr'_]yk_i + Zr’(i + l)xy’ k-4
1=1 1=0
+ (ri(k + 1) — to)zy".

In order to have q; = 0 for z = &1, all terms that are for fixed = homogeneous
polynomials of degree k in y, 2 must vanish. This implies

rn=0 0<i<k-1,
T'k(k-{-l)—t[]:o.
In the same way one has s; =0, (0 <1< k—1), se(k+1)—ry = 0 from

component gz considered aty = 1 andt; = 0,(0 <7 < k—1), {1 (k+1)—sy =
0 from ¢3 considered at z = £1. This completes the proof. O
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Remark 3.2: Definitions (3.29) and (3.30) have been designed in order to keep
divq in Px_, by adding divergence-free functions to (P:)* while providing
terms with a normal component in Py(e;) on each side or face e;. In the three-
dimensional case, there is no unique way to give such a definition. For instance,
one could have used, instead of (3.30),

k
BD My ={g | ¢ =pi(z,y,2) + D ricurl {0,0,ya**!24~%}

1=0

k
(3.36) + Zs.- curtl {zy/t12¥7%0,0}

1=0

k
+ Z t; curl {0,zzFykt 0}}
i=0

We shall also show below on an example how other choices can be made. O

We would now like to see what are the relations between BDMp,(K)
and RTjy)(K). For the sake of simplicity, we restrict ourselves to the case
n = 2 even though the result can easily be extended. First, one obviously
has BD M) C RTj) . However, the space obtained by restricting the normal
component of B.D M) to belong to Py _1(e;) on each side has no direct relation
to RT};_1) and is a much smaller space (providing an approximation of the same
accuracy). In order to get a pattern of inclusions, we define the space

Sie+1] = RTj) + Span{curl F+2y, curl yz*t?,

3.37
(3:37) curl 2842, curl y*+?}.

This space obviously contains RT[;) but also contains BD Mg 41y

We can also define the space BDF M| 1) be restricting the normal com-
ponent of ¢ € BD My q) to belong to Pi(e;) instead of Pry1(e;) on each side
(BREZZI-DOUGLAS-FORTIN-MARINI [A]).

It can easily be checked that BDF Mp;; = RTjp). To make things clear, let
us consider a few diagrams (Figure 111.13)
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BDB[H_l] BDF M4y Ry S[k.,.l]
) } [}
k=20 ] o= -] R N B
1] ] Y
i ) [ | i 4 b 44
k=1 7 B N +2 T +4 B - +4
-] |- -4 - —ee] - . -
v v i v ¥ t V9
b 44 [ b 44 b4
k=2 - +2 . - +6 [ -] +12 b : +12 :
Y Y | DeEER:
b b (RN (H RN ‘HAH
k=3 T o+ [T 3] 2 [T e [T e [©
e R s s x s 1

Figure ITL13
We can then summarize the previous facts in Figure IIl.14 in which arrows

indexed by b represent a reduction in boundary degrees of freedom and arrows
indexed by i represent a reduction in internal degrees of freedom

b i b
Spry —— Ry —— S —— RTpy

IR L

1 b
BD My BDF M4 ——— BDMy) ——— BDF My,

Figure I11.14

Space RTjg) plays a special role in this set of spaces. It is the simplest possible
space and it is related to the MAC scheme (HARLOW-WELSCH [A]) that has
been extensively used in fluid mechanical computations. It is clear from Figure
II1.14 that both RTjx) and BD I M4} are a generalization of this space with
the same order of accuracy. One uses KTy whenever one wants div g€ Qx
and BDFM[,H_I] if div g € P is sufficient. It is thus worth considering
BDF M4y in more details. It is easy to check that one has in the two-
dimensional case

(3.38) BDFMyi) = (Prs1)*\0, 2" I\ ("4, 0).
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This shows that it is natural to move to BDM|, ) and get an extra order of
accuracy whenever one is ready to pay for extra boundary nodes.

To make our presentation complete we now consider a few three-dimen-
sional elements.

Example 3.4: Spaces BDM|y; and BDF My for n =3

Space BDM][;) has 18 degrees of freedom. They are the moments of degree
1 on each face. Any function of BDM[;) can be written in the form (using
(3.30)

ar + e+ ey +diz + rozz + 2rizy — tozy — t1z2,
(3.39) g =< ag+ box + coy + doz — royz — 71y? + soyx + 251y2,
as + baz + c3y + daz — sgzz — s122 + tozy + 21 2.

The last terms have been generated (from (3.30)) by taking the curl of six
vectors:

{0,0,2yz}, {0,0,2y?}, {yzz,0,0}, {yz%,0,0} {0, zzy,0}, {0,zz2,0}.
A space with similar properties could be gencrated by taking the curl of

{0,0,zy2?}, {0,0,2%y}, {2yz,0,0}, {¥’z,0,0}, {0,2yz,0}, {0,22%0}
as in (3.36), or even the more symmetrical form

{0,0,zy%}, {0,0,2%y}, {z%y,0,0}, {¥°2,0,0}, {0,2z% 0}, {0,2°z,0}.

The last case can be written in a gencral form; however, it is more cumbersome
than (3.30).

Space BD M|y has 39 degrees of frcedom. Boundary nodes account for 36
of them and 3 internal ones remain. The space B DI M|y obtained by restricting
the normal components to Py (e,) on each face thus has 21 degrees of freedom,
18 of them on the boundary. By comparison, the space RT has, for the same
order of accuracy, 36 degrees of freedom, 24 of them on the boundary. Again,
one has for n = 3, BDFMp) = RTg). ]

I11.3.3 Interpolation operator and error estimates

Let now ¢ be some function of H(div; K). Using for each of the spaces the
degrees of freedom previously described, it is possible to define an interpola-
tion operator piq, provided q 1s slhightly smoother than merely belonging to
I (div; K). Indeed the degrees of freedom used always imply the moments of
q on the faces (or sides) of an clement. But the functions p; € R, (3K) do not
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belong to H'/?(8K), and it is not possible in general to compute expressions
like f,, ¢-n pr ds as ¢ - n is only defined in H~'/2(8K).

However it is easy to check that if ¢ belongs to the space (3.40)
(3.40) W(K) = {g € (L'(K))" | divg € L* € ()}
(for s fixed > 2), then such a construction is possible.

For the convenience of the reader we shall summarize now all the spaces
introduced in this section, and, for each of them, we shall define the correspond-
ing operator pg that we will always assume to be defined in W(K).

Case n — 2, triangular elements
(i) BDM(K) = (Pe(K))?, (k> 1).
ok W(K) — BDM(K) is defined by
/ (g—pKq) -nprds =0, Vpr € Ri(0K),
oK
(341 / (g—pxg_)-g[gd pr—1 dz =0, Vpr—1 € Pp-1(K),
K
/ (g—ng) - cgrl (b](pk_g)d:l: = 0, Vpk_ZEPk_z(K) (]CZZ)
K
(i) BDFM(K)={q€ (Pe(K))? | q-nlax € Re_1(0K)}, (k> 1)
pr: W(K) — BDFM(K) is defined by
/ (g— ng) ‘npi_1ds =0, Ypr-1 € Re-1(0K),
9K
(3.42) / (¢ - pxq) - grad pr—1 dz = 0, Vpr—1 € Pr_1(K),
K
/ (g—prq) - curl (bgpr-z)de = 0, Vpr_2€Pe_2(K) (k22).
K
(iii) RT(K) = (Pe(K))? @ 2P (K), (k > 0).
pr: W(K) — RT:(K) is defined by

(2— ng) -nprds =0, Vpr € Re(K),
(3.43) oK

/k(z— PKQ) - p,_, de =0, Vp,_| € (Peo1(K))* (k 2 1).
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Case n = 2, K = unit square

(i) BDMp(K) = (Pe(K))? @ curl (z*+'y) @ curl (zy*+) (k 2 1).

pr + W(K) — BDMpyy(K) is defined by

f (¢ — pxq) -npeds =0, Vpi € Ri(0K),

(3.44) 8K

/ (¢g—pKq)-p,_,dz=0, Vpr€ (Pe_2(K)) (k> 2).
K

) { BDFMyy(K) = {g € BDMy(K), ¢-nlox € Ri-1(0K)}
11

= (Pe(FOMY*)) x (Pe(BN\{*}) (k > 1)
pk " W(K) — BDF M)(K) is defined by

/aK(g— prq) npr-1ds =0, Vpi-1 € Re-1(0K),
(3.45)
/K(g— pKa) B,y dz =0, Vp, , € (PealE))? (k 2 2).

(i) RTj(K) = Peyrp(K) x Peps1(K), (k> 0).
pr W(K) — RTp(K) is defined by
(¢—rrg) nprds=0, Vpx € Rx(9K),

(3.46) oK
L(g— pK_(D .ék dr = U, Vék & Pk—l,k(I{) X Plc,k—l([{)-

Before discussing the cases n = 3 we recall some additional notation. For
K = tetrahedron, we set

(G4T)  @u(K) = {$ € (Pe())* | div =0, § - nlox = 0}.

For K = cube, we set

(348) lI’k(I{) = Pk—l,k,k,(I{) X Pk,k—-l,k(f{) X Pk_k'k_l(ff),
(3.49) Homu(€,7) = &€ 1",
(3.50) Ry(0K) = {v € L*(0K), vl., € Qu(es), 1 < i <6}
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Case n = 3, K — tetrahedra
() BDMp(K) = (Pe(K))?, (k> 1).

px : W(K) — BDM(K) is defined by
/BK(Q— pkq) nprds =0, Vp € Re(9K),
G50 { [ (a-pke) mmip, dr=0, Vpuoi € Pi(K),
/K(g~ pKq)- ¢, dz =0, V¢ € D, (K),
(i) BDFM,(K) ={g € (Pe(K))®, ¢-nlox € B (9K)} (k> 1)
pr  W(K) — BDFM;(K) is defined by
/M(g— Prg) npr_1ds =0, VYpp_1 € Rp_1(8K),
650 4 [ @ pxe) gssdpodr =0, Vps € Pe(K),
/K(g - pKg)-¢,dz =0, V4, € B(K),
(iif) RT:(K) = (Px(K))® ® zP(K) (k 2 0).
px @ W(K) — RT,(K) is defined by
/BK(g— prq) -nprds=0, Vp; € Ri(9K),

(3.53)
L(g - pxq) -p, dz =0, V}_)k_l € (Pk_l(K))a.

Case n = 3, K = unit cube
. k
() BDMp(K) = (Py(K))? ® curl (0,0,zy 12k

k
&t (0,854 0)

x

@o curl (z**1y%=%2,0,0) (k> 1.

px : W(K) — BDMy,(K) is defined by

/{,K(g—pxg) ‘nprds =0, Vpr € Re(0K),
(3.54)

/K(g—m(g) ‘P4z =0, Vp,_, €(P2(K))? (k>2).
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(i) BDFMpy(K) = {g € BDMpy(K), ¢ n|ox € Re_1(0K)}
= (P:\ Hom,(y, z)) x (P:\Hom,(z, z))
x (P \Homg(z,y)), (k> 1).

px @ W(K) — BDF My (K) is defined by

/ak(g—pxg) NP1 ds = 0, Vpk—l S Rk—-l(a[()i

(3.55)

/ (g-pKg)-p,_,de=0, Vp _,€ (Pe-2(K)), (k 2 2).
K

(i) RTjey(K) = Prg1,kk,(F) X Py p1,6(K) X Pegps1(K) (k2> 0).

px » W(K) — RTy)(K) is defined by

(¢—pxq) npyds=0, VYp € Ryy(0K),
(3.56) oK
/ (¢-pxq) ¢, dz =0, Yo, € Up(K).
K

Note that for rectangular elements we used the unit square for K (or the
unit cube for = = 3). For a general K, the spaces and the interpolation operators
Pk have to be modified by means of the contravariant mapping & of (1.45). In
particular, pxq = &(py §), where § = &~!(q) and K is the unit square or the
unit cube. As we have seen, everything works in the case of affine elements
whereas some complications may arise for general elements.

In the following, whenever it may be convenient, we will denote by the
symbol M(K) anyone of the above approximations of H(div;K). Since, as
we shall see, the accuracy of these approximations in the L2-norm is especially
relevant, we decided to indicate by M;(K) anyone of the above spaces such
that (P (K))* C M(K) but (Pr41(K))™ ¢ Mi(K). Hence, in the following,
M} (K) will denote anyone of the following spaces: BDM;(K), BDMy,(K),
RT(K), RTj(K), BDF My 1(K), BDF Mpq)(K).

Using Lemmas 1.6 and 1.7 and usual techniques (CIARLET [A]) we have
immediately the following result.

Proposition 3.6: Let K be an affine element and pg be the interpolation oper-
ator W(K) — M(K). There exists a constant ¢ depending only on k and on
the shape of K, such that, for 1 < m <k + 1, for s = 0 or 1 and for any q in
(H™(K))*, we have

G.57) llg = prallsxc < chZ™ |glm k. O
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We now want to analyze the behavior of the error in I (div; K). For this

I‘i: need to characterize the space of the divergences of the vectors in M ( K)
t .

(3.58) Dy (K) := div(My(K)).
A simple analysis shows that, for affine elements, we have
div(BDM,(K)) = div(BDMp,(K)) = P (K),
div(BDF M4 (K)) = div(BDFM[k_H](K)) = P (K),

div(RT(K)) = P (K),
div(RTy(K)) = F(Qw(K)),

with § defined in (1.35). (Note that ), is not invariant under affine transfor-

mat10n§.) 'Ijhe following result is of paramount importance in the study of these
approximations.

Propositi?n 3.7: Let K be an affine element and Pk the interpolation opera-
tor: W(I(,) — Mi(K). Let moreover 7x be the L2-projection on Dy(K) =
div(My(K)). Then we have, for all 7 € W(K),

(3.59) div(piq) = mg div q

Proof: Since divig € D(K) by definition, we only have to prove that

(3.60) / v div(pkq) de = / v div ¢ dz, Vv € Di(K).
K K -

Indeed

v(div — di dr = B .
(3.61) /K (v picg - div g) do /K(g prq) - grad v dz

—/ (4~ rrqg) nvds,
9K

and it is easy to check that, for all the i i ;
. s possible choices of , t -
side of (3.61) vanishes. O P, the right-hand
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Remark 3.3: The statement of Proposition 3.7 can also be expressed as
di
W(K) —— LX(K)
(3.62) - l - l

o
Mu(K) — s Di(K)

and is often called the “commuting diagram property” (DOUGLAS-ROBERTS
[A,B]). 0

From Proposition 3.7, using Lemmas 1.6 and 1.7 and usual techniques, we
easily have the following result.

Proposition 3.8: Let K be an affine element and px the interpolation operator:
W(K) — Mi(K). There exists a constant ¢ depending only on k and on the
shape of K such that for 1 < m < ¢ar(k) we have

(3.63) [|div(g — prDllox < chi |div g|m,k ,

where ¢pr(k) = k for BDM(K) or BDMy and ¢pr(k) = k+1 for the other
choices. [

Remark 3.4: Proposition 3.8 shows that choosing RTj, RIj), BDF My, or
BDF M{y.41) leads to the same accuracy in H(div; K') as we have in (LA(K))".
This is not the case for BDMj or BDM(; where the accuracy in (L*(K))"
is of one order larger than the accuracy in H(div; K'). However, as we shall
see in the next chapter, the commuting diagram property is so strong that this
drawback can be circumvented. O

Remark 3.5: For nonaffine elements the situation is more complicated. In
particular, we now have to define Dy(K) and F(Dy(K)), where K is the
reference element and § is defined in (1.35). On the other hand, div(M(K))
will be 3(J ! div My (K)). Hence, it is clear that Proposition 3.7 will not hold
anymore. However, Lemma 3.5 will still have important consequences.

For instance, if ¢ € W(K), then
(3.64) mgdivg=0=divg=0.
Moreover, for any ¢ € W(K),
(3.65) div ¢ = div pxg = 0.

On the other hand, Proposition 3.6 still holds (at least for RT elements) in the
weaker form

(3.66) llg — prallsxc < k™ (lghm k + bk [diV glm k)
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(fors = 0,1 and 1 < m < k+1, see THOMAS [B]). This result is not optimal:
a better one can be found in GIRAULT-RAVIART {A] for the case m = 1,
in which the term divg in the rigt-hand side does not appear. It is not known
whether this better result can be obtained in the general case. Finally Proposition
3.8 does not hold (at least for T -elements; see again THOMAS [B]). O

111.3.4 Approximation spaces for H(div; Q)

It is clear that the spaces defined in the previous sections can be used to define
internal approximations of H(div;$). The choice of degrees of freedom has
obviously been done in order to ensure continuity of ¢ - n at interfaces of
elements. We can then define, for each choice of M, (K), a space

3.67) M (Q,Ts) = {g € H(div; Q), qlx € Mx(K)}.

In a similar manner we have, in agreement with the notation (2.18),
(3.68) £ Dk, Tw) = {v € L}(), v|k € Dp(K)}.

It is clear that for affine elements

(3.69) div My (2, Th) C £2(Dy, Tn).

Moreover, we can now define a global interpolation operator from
(3.70) W = H(div; Q) n (L’ ()"
(s fixed > 2) into M (2; 7,) by simply setting
(3.71) (Mhg)x = px(glk).

By defining Py := projection on £°(Dy, T,) we have the following commuting
diagram

div

w —  LYQ)
(3.72) 1 l P”l
My(Q,Th) — £9(Dy, Ts)
This will imply in particular that

(373) div Mk(Q,Th) = ED(Dk,n)

Finally, we have from Propositions 3.6 and 3.8 the following estimates for
the interpolation operator 11},
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Proposition 3.9: Let 7, be a regular family of decompositions of §2, and let
I, be defined as in (3.71). There exists a constant ¢ independent of A such that

(3.74) llg — Magllo.o < ch™ |glma
for 1 < m < k+ 1. Moreover,
3.75) ||div(g — th)Ho,n < ch’ |div gls,n,

where s < k for BDM; or BDM;y and s < k + 1 for the other choices of
M,.0O

III.4 Concluding Remarks

This chapter is evidently not a complete presentation of ﬁni‘te element ap-
proximation methods. It cannot be, unless it becomes a book by itself. Ox{r aim
was therefore to present examples of the most classical cases and to consider a
construction for the less standard case H(div;2). Other cases have been con-
sidered; for instance NEDELEC [A,B] devcloped approximations of the spaces
H(curl;2). On the other hand, approximations of clasticity problerr}s by the
Hermann—Johnson technique will also require special spaces. They will be de-
scribed in due time. We, however, believe that the present chapter will then
provide a sound basis for these developments.

IV

Various Examples

This chapter will rapidly present various applications of the theory developed in
Chapter IL It will give the reader a general idea of the possibilities offered by
this theoretical framework. Many of our examples have already been considered
in Chapter I. We shall consider here existence and uniqueness proofs, when they
can be obtained, in a proper functional setting. Moreover, we shall give exam-
ples of discretizations and error estimates. Some of the problems considered
here will be presented in a more detailed treatment in future chapters: this will
be the place where special cases and exceptions will eventually be discussed; the
present analysis is, in principle, restricted to simple and straightforward cases.
We shall, therefore, successively consider non-standard methods for Dirichlet’s
problem, including hybrid methods. We shall then present approximations of
the Stokes problem and of the linear elasticity problems. Fourth-order prob-
lems will also be considered either by mixed methods such as the Y—w method
(CIARLET-RAVIART [C], MERCIER [A]) or 4 la MIYOSHI [A] or by dual
hybrid methods. This list of examples is obviously not exhaustive and many
applications have not been treated, in particular, equilibrium methods for which
we refer to BREZZI-MARINI-QUARTERONI-RAVIART [A], HLAVACEK
[A), HASLINGER-HLAVACEK [A]-[B] and BATOZ-BATHE-HO [A]. Other
cxamples can be found in ROBERTS—THOMAS [A] and the references therein.
Other applications and variants of the methods presented can also be found
in BATOZ-BATHE-HO [A}], KIKUCHI [A], and QUARTERONI [A,B], RAN-
NACHER [A], and SCAPOLLA [A] for fourth-order problems. Time-dependent
problems have been treated in QUARTERONI [C] and with a quite difffrent
methodology in HUGHES-HULBERT [A]. Finally, let us point out the contribu-
tion (e.g., WHEELER-GONZALEZ [A]) of many people working on reservoir
modeling to mixed methods.
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IV.1 Nonstandard Methods for Dirichlet’s Problem

IV.1.1 Description of the problem

This section presents a unified framework for the analysis c?f n9nstandard meth-
ods for problems involving an elliptic, Laplacian-like equation in IR*. Although
we shall mainly consider the case n = 2, most results can be extended t.o the
case n = 3 using the construction developed in Chapter III. We thus consider a
problem of the following type:

—divA(z)gradu = f in Q,
(1.1) u}y, = g1 on D,
A(z)gradu-n =g on N,

where Q is a bounded domain in IR® and T = DU N = 0% ‘We assum.e
A(z) to be an n x n positive definite matrix and that its smallest eigenvalue is
bounded away from zero, uniformly with respect to z, that is,

(1.2) (A(2)g,q) > alglp-, Vg€ R,

with o independent of z. We have already introduced this problem in Chapter
I with A(z) = I. Restricting ourselves temporarily to thet case g1 = 0, the
standard variational formulation is the following minimization problem (when
A(x) is symmetric)

1.3) inf %/ Aggdv.ggdvdz—/ fvdz——/ gav ds,
] ¢ N

uEHélD(ﬂ)
where (cf. Chapter III)
(1.4) H} () = {v]v € H'(@), »|p = 0}.

It is classical that there exists a unique solution to this problem. We shall call
problem (1.3) the Primal Formulation.

Using duality methods, we also transformed, in Chapter I, this problem to
get a Mixed Formulation, namely for f € L*(2) and g, = 0,

05wt a4
g€ Ho, n(div;$2) vEL3(Q) Q

+/(divq+f)vd:z:+/ g1¢-nds,
Q - D

where one has (cf. Section III.1.1)

(1.6) Hon(div;) = {g|q € H(div;Q), ¢ - n|n = 0},
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the sense of ¢-n|y = 0 being defined as in Section IIL1.1. Later we shall come

back to the nonhomogeneous case ¢-n =gy # 0. Problem (1.5) is equivalent
to the Dual Formulation

1.7 inf A—l ad / nds.
a7 geno,l,lvl(div;n)/ﬂ ggcet [ gig-nds

dng-}-f:O

Problem (1.7) is a constrained problem (in the sense of mathematical program-
ming). The Mixed Formulation uses the Lagrange multiplier v to deal with the
linear constraint divg+ f=0.

It must be remarked that problem (1.7) is not, strictly speaking, the dual
of problem (1.3). That dual problem should be written with g € L))"
and f € H=}(Q). Here we use a modified form using a stronger space for
g while the regularity of v has been weakened. It must also be said that the
approximation of this problem is not the main interest. The reason for such a

detailed study is that it provides a simple framework that will later be generalized
to other important problems.

This section will thus be entirely devoted to the study of problems (1.3),
(1.5), and (1.7). We shall first consider approximations of problem (1.5), that
is, mixed finite element methods. To work out such an approximation we shall

have to use the finite element spaces approximating H (div; Q) built in Chapter
III.

To approximate the dual problem, we shall need to build vector functions
g satisfying the condition

This condition is the analogue of the equilibrium condition in elasticity theory,
and approximations satisfying it will be called equilibrium methods. Finally
domain decomposition methods will lead us to hybrid finite element methods.
Hybrid methods will be called primal or dual, depending on the formulation
being used. This distinction corresponds to assumed stress or assumed displace-
ment hybrid methods in elasticity theory. Our analysis will rely directly on the
properties of H'(Q) and H(div; ) and of their approximations considered in

Chapter IIL
IV.1.2 Mixed finite element methods for Dirichlet’s problem

We are now able to consider in details the approximation of the mixed formu-
lation

(1.9) infsup%/A_l_.gdx+/(divg_+ f)vda:+/ g1q-nds,
¢ v ol D
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with ¢ € Ho n(div;Q2) and v € L%(2). We can now see, by the results of
Section IV.1.1 that the last term of (1.9) makes sense if g1 € H'/2(D) and
that the boundary integral must be read as a formal way of writing the duality
between H!/2 and H~'/2. Problem (1.9) is a saddle point problem. With the
notation of Chapter II, we have

(1.10) a@@=/A”Mﬂ
Q
and
{1.11) b(v,q):/ vdivgdz.
g o g

The optimality conditions for (1.9) can be written as

a(p, @) +b(g,w) = (91,¢-n), Vg € Hon(div; ),

(112 b(p,v) = —/ fvdz, Yo e LHQ).

- Q
We work with the spaces V = Hy n(div; ), @ € L*(Q). It is natural here to
identify @ and its dual space @'. The operator B is then the divergence operator
from V into (. This operator is surjective. Indeed if f € L*(2) = Q is given,
we can solve the problem

—~A¢ = fin Q,
¢,D:Oa
o9, _
gn' T

to find ¢ € H'(Q). Taking p = grad ¢, we have found p € Ho,n(div;$2) with
divp+ f=0.

Remark 1.1: Note also that such a p will belong, for instance, to the space
(L*(2))? for some s > 2. Setting

(1.13) W = {g|q € (L'(R))?, divg € L} N Ho n(div; ),

we have ||p|lw < ¢||fllg. Hence, B has a continuous lifting from Q into W.

Moreover we have coerciveness of a(.,.) on Ker B although not on V.
Using assumption (1.2) we have, in fact, whenever divg, =0,

(1.14) a(g,,q,) = @lg,Rraayn = o )lg 1 rcaiv, -
0’2o ol(

The theory of Chapter 11 then applies in a straightforward way and we obtain
existence and uniqueness of a solution (p, u) to this problem. 0}
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Remark 1.2: Uniqueness of the Lagrange multiplier u is consequence of the
surjectivity of B which implies Ker B* = {0}. O

Remark 1.3: The reader should take care to the inversion of notations between
the general theory of Chapter IT and the present application. In the present case,
p is the primal variable and u the Lagrange multiplier. 0

The above results also enable us to consider a nonhomogeneous problem,
that is, the case g2 # 0 in (1.1). To do so we consider any ¢ such that

(1.15) A7 '§-n=gy0on N.

This is possible and can be done explicitly by considering a classical solution
to problem (1.1) with f = 0 and g, = O and then taking ¢ = gradu. We then
look for p = g + p, with p, € Ho n(div;$2). This leads us to the problem

0(20,20) + b(go,u) = (gl’ﬂo -n) - a(i,go), Vg € Hon(div;Q),

1.16
(116) b(go,v)::—/ﬂfvd:c—b(g:,v), Yv e LE(Q).

This means that considering g # 0 can be reduced to changing the right-hand
side of (1.12).

We are therefore ready to consider the approximation of the Mixed Formu-
lation.

In Chapter 111, we built function spaces for the purpose of approximating

"H(div;€2). We can now use to discretize problem (1.12) or (1.16) anyone

of the spaces My (2, Ty ) introduced in Section II1.3.4. The approximation of
Q = L*() is then implicitly done: Q, must be £°(Q, D;). To fix ideas, we
shall use, following RAVIART-THOMAS [A] RT:(Q2, 75) and we define

(1.17) Vi = {gh ]g_h € RTy(Q,Ty), 1, ‘n|y =0}

Such a definition is possible if the partition into elements is made in such a way
that there is no element across the interface between D and N on I'. Having
chosen V}, as in (1.17), we must take

(1.18) Qn = £5(Q) = {un |vnlx € Pe(K)}.

We could replace this choice with any of the elements listed in Section I111.3.3.
In order to apply results of Chapter II without unnecessary technicalities, we
shall restrict ourselves to the case of affine elements.

We may now introduce the discrete problem

-1 . 4=
/QA Eh.ghdr+/nuhd1vghdz_(g,gh), Vg, € Vi,

(1.19) / vadivp, dz + (f,08) = 0, Yo € Qn,
1)

(p,»un) € Vi x Qh,
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where f and § may include nonhomogeneous boundary conditions as in problem
(1.16), that is,

{
(

,2) = (glag'z) - a(_‘l’_‘l))
,uy = /nfvdr—kb((j,v).

S S

To apply the results of Chapter II, we must check that the bilinear form a(-,-) is
caercive on Ker By, and the inf-sup condition. These properties will be an easy
consequence of the commutative diagram (I11.3.72). In particular, we already
know from (II1.3.73) that

(1.20) div Vi = Qn.

This shows that By, is nothing but the restriction to V}, of the divergence operator
and that it is surjective so that Ker B}, = {0}. Moreover ,we have

(1.21) By = Blv, = div|y,
and this implies obviously that we are in the special and interesting case where
(1.22) Ker By, C Ker B.
We can then rewrite (111.3.72) in the abstract form
B !
W —— Q=Q
(123) m | A
B), o,
Vi — Qr =W,

with P, the LZ-projection from Q onto Q3. From Remark 1.1, we know that
B has a continuous lifting from Q to W. Since the operators Il are uniformly
bounded from W to V}, we have

/(divg— div H;,g)v;, dz =0, Yvn € Qh,
Q

{Magllv < cllgllw.

(1.24)

The first part of (1.24) is a direct consequence of the commuting property of
diagram (1.23). Using (1.24) and Proposition I1.2.8 we obtain that the discrete
inf-sup condition is satisfied with a constant independent of A.

On the other hand, (1.22) implies that the coercivity of a(-,-) on Ker By
is trivial and follows directly from (1.14).

We can now apply our abstract resulls to get
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Proposition 1.1: Problem (1.19) has a unique solution. Moreover, if (p, u) is
the solution of problem (1.16), we have the estimates

(1.25)
llp = pally < zlen‘ﬁh llg —g,llv,

(1.26)

= unlle < e ing llu=wlio+ inf llp~g,lv).

Proof: (1.25) is nothing but Proposition 11.2.6 in the case where Ker By C
Ker B. Then (1.26) follows from Proposition 11.2.7. 0

This direct use of Chapter II is optimal when the spaces RT or BDF M are
used but not with BDM. This comes from the fact that in RT} (2, 7) we have
an estimate on infgheV llg — g, llo and infthV;. [|divg — divg, flo to the same
order O(h**1), whereas the latter is only O(h*)in BDM;(Q;Ty) (Proposition
I11.3.9). We must, however, not despair. Denoting

(1.27) H = (LZ(Q))",
we have as in Section 11.2.5
a(p,q) < ,
(1.28) {@@_mﬁwm
a(g,q) 2 o|lgllzm-

and indeed flg||r = [lg]]v for any ¢ € Ker B. We can thus apply estimate
(11.2.53) of Remark 11.2.14 which yields

1.29 - < inf - < -1

(1.29) lp—p,llu < clherzlh(g)llg 4l < ellp ~ Maplln,
which is now optimal. It must be noted that the second term of (I1.2.53) vanishes
as we have Ker B, C Ker B. Estimate (1.29) is now optimal for any of the

spaces considered in Chapter 111

We can now join the above results with the approximation results (I11.3.74)
and (I11.3.75).

Proposition 1.2: Let M, (Q,7,) be any of the spaces defined in (I11.3.67) and
(111.3.41) to (I11.3.46) in the two-dimensional case or (I11.3.51) to (I11.3.56) in
the three-dimensional case. Let £2(Dy,7) be the corresponding space given
by (II1.3.68). Let (p, u) be the solution of problem (1.16). Let (p,,un) be the
solution in Vi, x Qn = M(Q,T,) x £°(Dy,T) of problem (1.19). Then we
have the estimates

(1.30) lle = plloa < ch* lpll.a
for s < k 4+ 1. Moreover, we also have
(1.31) e — unllon < ch® (llplls + [lll,)

for s < k+1 for the spaces RT and BDF M and s < k for the spaces BDM. 0
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Remark 1.4: The case of non-affine elements is somewhat more tricky. In that
case the contravariant transformation & of (II1.1.45) no longer has a constant
Jacobian and we no longer have B = div|v, because

div §
7)
where § is the standard change of variables (II1.1.35). As the Jacobian is not

constant in the general case, divg ¢ Q. It can, however, be checked that
Ker By, — Ker B. We refer to THOMAS [B] for a study of this case. 1

(1.32) divg = div(84) = 3(

Remark 1.5: In the affine case (where divV, = @), a direct subtraction of
the second equations in problems (1.16) and (1.19) yields

(1.33) /(divg —divp, Jva dz =0, Yon € Qn-

o P
This means that divp, is the L*(2)-projection of divp onto Q. An estimate
of ||divp — divp, || then directly follows. 00

We shall come back to this mixed method in Chapter V. We shall then
consider sharper estimates and introduce Lagrange multipliers to deal with con-
tinuity of p, n at interfaces. This will allow us in particular to build an efficient
solution method and to obtain from the results a better approximation of u. This
method of Lagrange multipliers is in fact quite general and will lead to a more
standard interpretation of otherwise non-standard methods. In particular, BDM
spaces will recover in the scalar variable the same order of convergence as the

other methods.

IV.1.3 Primal hybrid methods

We now consider for the first time a nonstandard method (cf. RAVIART-
THOMAS [B]) based on domain decomposition. We place ourselves in the
frame of Example 1.3.4.

To avoid complicating unduly our presentation we shall restrict ourselves
to problem (1.1) in which D = T, that is ,Dirichlet boundary conditions on
the whole of T'. This restriction is in no way essential and does not diminish
the generality of our results. We thus want to find u € H}(£2) solution of the
minimization problem

(1.34) inf

L { Agradv radvdo:—/ vdz,
ueH;(n)Z/n BLacy L nf *

or equivalently of the variational problem

(1.35) /Agggdu gggdvdx:ff’udx, Yv € Hg(S).
9] Q
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Introducing now a partition of 2 into elements, it is natural (this is in fact one
of the basic ideas of the Finite Element Method) to define u on each element
and to impose continuity conditions at the interfaces. The standard assembly
process is based on this idea. We now follow a slightly different route. We use
X(Q) =TI, H'(K,) as defined by (1I1.1.21) with the product norm (111.1.22).
H{(Q) is then a closed subspace of X () and the fact of belonging to HE(Q)
can be considered as a linear constraint on u. From this, we can transform
(1.34) into a saddle point problem:

(1.36)  inf sup Z{%/Agr_adv-g@dvdz
K

vEX(Q) gqeH(div2)
—/ vg-nds—/fvdr},
8K - K

where we formally write f;, vg nds for the duality between H*/2(§K) and
H~Y2(9K). The optimality conditions of problem (1.36) are indeed

Z{/ Agradu - gradvdz
% K

_/ UE'EdS—/ flld.’t}:o, VuEX(Q),
aK K

Z{/@K%@fh} =0, Vg e (div,Q).

K

(1.37)

From Proposition IIL1.1 we then have v € H} () so that u satisfies (1.35). Let
us now set our problem in the framework of the general theory of Chapter 11.
Taking V' = X(£2) and Q = H(div;Q); we then define,

138)  a(u,v) = Z{/ Agrad .g;gdvdzr}, Yu,v €V,
I% K
and
(1.39) b(v,g):Z{—/ vg-nds}, Vv eV, VYqeQ,
% 3K - -

always using the formal integral notation for the duality between H~Y2(0K)
and H'/?(8K). The bilinear form b(v, ) defines an operator B from V into
(. We have from Propositions 111.1.1 and II1.1.2

(1.40) Ker B = H}(Q)
and

Ker B' = {¢|g € H(div;Q),¢ nlsx =0, VK € T}
(1.41)

=[] Hoox(div; K)
K
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Loosely speaking, the operator B associates to u its jumps on interelement
interfaces. We could also have defined it from V onto the space

(1.42) m!/? =[] o'*(9K).
K

We thus want to check the closedness of Im B by obtaining an inequality of the
form

b(v,q)
1.43 sup ——=- > k|qlo/ Ker 5*-
(1.43) veb Tollv

In the present case it is obvious that one has

b 1/2
(1.44) sup () %{Z(Hg-zll_uz,ax)Z}
K

and to obtain (1.43) it is sufficient to show that one has (on each element)

(1.45) wf g+ g llmcaiv.xy < g nll-1yz,0x,

4,€H0,0k (v, k)

But (1.45) is readily obtained by solving a Neumann problem

coradv d / ydz:/ q-nvds.
(1.46) /Kgr_ado‘) gadvde+ | ¢ oL 2

Setting § = grad¢, we have §-n = ¢ -n and divg = ¢ € L2(K). Moreover,
we have
ldllsr¢aiv. ey = 10l < llg - mll-1/2.6x

and (1.45) follows,

Proposition 1.3: Let f € L2(Q) be given. There exists a solution (u,p) to

problem (1.37). The first component is unique and the second one is defined up
to an element of Ker B* as defined by (1.41).

Proof: Assumption (1.2) made on A, implies that a(-,-) is coercive on Ker B =
Hg(€2). The result follows by the closedness of Im B and Theorem II. 1.1. 0
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Remark 1.6: The first com
(1.1). The second compone
v =1on X and 0 elsewhe

ponent u is of course the unique solution of problem
nt can be chosen so that div p+f = 0. Indeed taking
1€, we have from (1.37a) for any solution Py

(1.47) / po-ndsz/divpodz:—/ fdz.
aK K - K

It is then possible to solve on K the Neumann problem,

—A¢:f+div1_)o,
%1 g
Onlap

The solution exists, and is defined up to an additive constant, as the right-hand

side is compatible. Then 9, = grad¢ € Ker B! and P, = p, + g, satisfies

q
divel—{—f:O.D =0

Remark 1.7: It is moreover possible to choose p = Agradu. Indeed there

comes from the first equation of (1.37) that p- Z‘_,a;( = Agradu - njsx on any
KeT,.0

We are now able to consider a discretization

of problem (1.37). We shall
use, as an example,

(1.48) Vi = £, CV = X(Q)

(1.49) Qr = {qn € H(div; Q), 4, "€ R(OK), VK € Tx}.

Note that only the traces of vectors in (Qy are polynomials.
in fact infinite dimensional. This is no problem in practice a
dimensional) traces are used in computing. We then solve the

Z{/}{Ag@duh - grad vy, dz
K

Our space Q}, is
s only the (finite
discrete problem

(1.50) —/ vhph-nds—/fvhdm}:O, Yv € V,
7 K

Z{/akuhgh-zds}:(), Yan € Q.
K

The first step in the anal

ysis of such a discretization is to examine
of the operator B, asso

ciated with the bilinear form b(vn, qn).

The first point that comes out js tha
example), Ker B, C Ker B; that is, functi

the properties

t we do not have (as in the previous
ons in Ker B, do not belong to HZ(Q).
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It is, however, easy to see that their moments up to order k are continuous across
interelements boundaries. This in turn implies, as the traces are polynomials of
degree k + 1 that we have continuity of the functions in Ker By, atthe £ 41
Gauss-Legendre points, associated to a quadrature formula of degree k42,
on every interface. Eliminating the Lagrange multiplier g, thus yields a non-
conforming approximation of problem (1.37), namely, to find uy € Ker By
solution of

(1.51) Z{/KAg@duh - grad vy dz} = /nfv;. dr, Yv, € Ker By.
K

We already considered such approximations in Chapter IIl and their analysis
is fairly well established (STRANG-FIX [A], CIARLET [B], CROUZEIX~
RAVIART [A], CEA [B], STUMMEL [A], FRAEUS DE VEUBEKE [B]).

One can therefore say that primal hybrid methods are another way of intro-
ducing nonconforming methods. The new point is to introduce an approximation
of p = Agradu which is more regular than the approximation deduced directly
from 1. Moreover, this approximation can be built in order to satisfy the equi-
librium conditions. Finally the convergence analysis through the saddle point
approach is simpler than the standard one and permits one to introduce correctly
the “patch test” arising in the analysis of nonconforming methods.

Before coming to this point, we first have to show existence and uniqueness
of a solution. With respect to the existence and uniqueness of the solution ux
of (1.51) we fortunately have no problem It is obvious that

(1.52) lvklv, = Va(vn, va)

defines on V, a continuous seminorm. The kernel of this seminorm is
(1.53) M = {v on € L2(9), valx € Po(K)} = £3,

and we have M N Ker By = 0 so that a(us, vy) is coercive on Ker Bp:
(1.54) a(von, von) > on lvoh[%,h, Yvon € Ker By,.

We do not know, however, how «, depends on h. This would require a discrete
Poincaré inequality and is quite technical to prove.

We shall rather obtain an error bound in the seminorm |vy |y, using Propo-
sition 11.2.14. In order to do so we must build an interpolate Tlp of p such
that

(1.53) b(vh,g—— Iyp) =0, Yo, € M.

But this is immediate by taking IIxp as defined by (111.3.71) provided p is at
least in W defined by (1.13). We thus obtain the error bound

- i - —1 .
@56 fe-ul <c( nf jumwlv, +lp-Thglo)
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Such an estimate is typical of nonconforming methods. The first term is
readily estimated by standard methods, that is, by the use of some interpolation
operator. The second one has already been considered. It must be remarked
that as p is defined only up to an element of Ker B*, this norm depends in fact
only on the values of p-n and p, - n on the boundary of the elements. If p is
regular, we get the same order of accuracy as in the first term. We therefore
recognize here a form of the classical patch test: moments up to order k£ must be
continuous to get the optimal convergence rate (CEA [B]). This corresponds to
the choice of multipliers belonging to Py (e;) on interfaces and thus to the choice
(1.49) for Qn. Consistency terms that appear in the analysis of nonconforming
methods are nothing but the contribution of the dual variable 1o error estimates.
Choosing a poorer approximation would destroy convergence properties. The
main difficulty in the present situation will be to study the convergence of p, .
To do so we now have to check the inf-sup condition. We shall try to do it
by the criterion of Proposition I1.2.8, that is by building a proper interpolation
operator for u € V: given u € V = X({2), one must find iy € V4 such that

(1.57) b(u ~tn,q,) =0, Vg, € Qn,

and depending continuously on w. This would prove Ker B} C Ker B* and
the inf-sup condition. We must then distinguish between two cases depending
on whether & is even or odd. To make things simpler we shall restrict our
presentation to £ = 1 or 2 (which are, by far, the most important in practice).

Example 1.1: Hybrid method, k = 1.

This is the simplest case of primal hybrid method (or nonconforming method).
Functions of V), are piecewise linear and Ker B} contains those of them that are
continuous at mid-side points on interfaces (Figure IV.1).

O o
O <

e continuity point
o vanishing point
Figure IV.1: Ker 13

The space Jx/ Ker B* can be assimilated here to R7p(Q). Now taking u €
X (), one readily builds %, by taking on each K

(1.58) /ﬂhds:/ uds, 1=1,2,3.
e, e
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It is then obvious that (1.57) holds; moreover, checking continuity is straight-
forward so that we have the error bound

(1.59) llp—p,llosxerme <clllp— g, llo/ kerme + [u —unlv,),  Yau € Q-

In practice this means that one can extract from such a nonconforming formu-
lation an approximation of grad u that is better than the direct one, graduy. We
shall see later (Chapter V) how this approximation can be easily deduced from
the standard one by a simple post processing trick (MARINI [C]). O

Example 1.2: Hybrid Method, k = 2.

This hybrid formulation yields the next simpler case of a nonconforming method.
Its use was long rejected because of a problem in the choice of the degrees
of freedom. Although the functions of Ker By, are continuous at two Gauss-
Legendre points on each side, these points cannot be used as degrees of freedom
because their values are linked by a linear relation. Indeed, let a; (1 < ¢ < 6)
be the six values of a second-degrce polynomial on the six Gauss-Legendre
points of the sides of a triangle (Figure IV.2), that is, a; = pa(z;).

Figure 1V.2

One then has
J
(160) ((16 - (ls) + (a4 - (lg) + (112 - (11) = / _6£st =0
ax Ot

(FORTIN-SOULIE [A]). We shall call the nonconforming bubble the second-
degree function vanishing at the six Gauss—Legendre points (a; = 0) and taking
value 1 at the barycenter of K. There also follows from (1.60) that one cannot
define @ |k by the six moments

(1.61) /ﬁh¢id'sy ¢i € Pi(ei),

and this precludes checking (1.57) by the simple method of the previous ex-
ample. Considering the problem a little more thoroughly, one then sees that
Ker B}, ¢ Ker B and that (1.59) cannot hold.
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Indeed Ker B} contains one vector ¢) that does not lie in Ker B*. It is
sketched in Figure IV.3, where the symbols + and - represent equal absolute
values of the normal component of Q-

Figure IV.3: The vectorqz

This is the first occurrence of a pathological situation where the inf-sup condition
does not hold. In principle, this should imply some compatibility condition on
the data, However, in the present case the second equation of (1.37) is always
solved with a zero right-hand side and Zx(g) = Z4(0) = Ker B, is always
nonempty.

It must be noted that contrarily to other cases of spurious modes that we
shall meet, for instance in Chapter VI, the existence of qg does not depend on
the mesh. Moreover, we know that its existence does not compromise the error
estimates on u,. One may therefore wonder if some convergence of p, could

not be obtained, modulo g,ol, that is, using an inf-sup condition of the form

b(vh)q )
(1.62) sup W > kollg,llgn/ Ker e -

v EVy

From Proposition 11.2.8 this will hold if, given u € V, b(u,¢3) = 0, one can
build i, € V, such that (1.57) holds. -

This can, indeed, be done, through a construction that is not local and
for which we do not know how to prove that the operation Il : u — wy is
uniformly continuous (with respect to i). We shall however be able o prove a
partial result: p, will converge in a quotient space @ /My, with Ker Bf C M.
In order to see this, we first define on every element K

(1.63) Uy = Bl

and we denote by Q% the one-dimensional space generated by g‘;(. ‘We then
define M = 3", Q% and

(1.64) Qn = Qn + M.
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1t must be noted that Q}, ¢ F(div; Q) so that we must now consider a noncon-
forming framework replacing @ by @* =[], H(div; K’} as in Section I11.2.6.

Let us first remark that the proof given for Im B to be closed is directly
extended to the operator B5* - V — @Q* now associated with the bilinear form
b(-,-) because this proof did not rely on any continuity property. It is also easy
to check that one now has
(1.65) Ker B;! = My, + Ker B!

where B} is evidently defined by the extension of &(:,-) to V4 x Q}.

Considering now the problem

66) a{uj,va) + b(va,p} ) = (f,vn), Yo € W,
1. . .

( bur ) =0, Ve, € Qi

it is easy to see that uj = uy. This comes from

(1.67) b(up,m,) =0, VYm, € My,

which is a direct consequence of (1.66). We thus have increased the indetermi-
nacy of ¢, without changing un. To prove convergence, we shall use Theorem
VI.5.1, which is directly suitable. Let us thus define in the notations of this
theorem

Qn = My,
(1.68) Qn = Qr\My,
Vi = Vi.

From (1.67) we have b(uh,gh) =0, Yu, € W, Vg‘h € Q, and there remains
to prove that b(-, -) satisfies an inf-sup condition on Vi x Q.

To do so, by Proposition 11.2.8, one must build in a continuous way i, =
115w such that

(1.69) b(in —u,4,) =0, ¥4, € Qn

Working in @y, (from which components q0 have been removed) now enables
us to do it in a local way, that is, element by element. It is indeed sufficient,
as in the previous example (k = 1) to interpolate u using its moments. This
does not determine @y in a unique way and a minimum norm solution has to be
chosen to get the desired uniform continuity property. We thus have the inf-sup
condition (k being independent of h)

( h.q*) « N -
(1.70) sup ——=1= > kollg;lloz /. Ve, € Qi
vrEVH ” H Vi
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In Chapter VI, other instances are presented where a global mode such as
qg{ can be transformed into a local mode )~ ax q%,. From the results of Section
g e VK1

V1.5, we obtain that if the exact solution u satisfies
b(u,my) =0,  Vmy, € Ma = Qn,

we have the estimate

.70 ]]£~£Z

s < (inf llp—g,llo+llu—usliv,) +£lgg; llp- g3 lle--

Remark 1.8: It must be noted that condition (1.71) is not as stringent as may
appear. Indeed, given u € V and replacing Bu by By, with @ the interpolate
of u in Vj, introduces a perturbation of the problem which now has 4y as a
solution. This means that, by a slight modification of the data, it is possible
to switch from a noncompatible problem to a compatible one without really
changing the solution. 1

Remark 1.9: Knowing that q}l € @; implies that g, - n is continuous at
mid-points of the interfaces. It can be checked, using the results of FORTIN-
SOULIE [A], that the converging part of p, is sometimes in fact equal to grad u,
which satisfies the same continuity properties for some right-hand sides. How-
ever, the procedure skeiched above can be extended to higher approximations,
the case k = 4 for instance, where this equality will no longer hold. O

Remark 1.10: In the case k = 2, it is possible to build the solution p, of

(1.58) starting from graduy, € Q. The trick is to use a spanning tree of the
elements: starting from the root, one can then adjust ax ¢% on each element
so that ¢, - n. is continuous on the interfaces with previously visited elements.
The propertles of grad u;. shown in FORTIN-SOULIE [A] enable us to do so
in a unique way as ox gK can be chosen arbitrarily on the root of the spanning
tree. This is obviously not a local construction. Its continuity depends on the
diameter of the spanning tree and thus of k and this leads us to believe that our
result is probably optimal. (This is not the case for the construction for £ = 1,
described in Chapter V, which is local.) O

IV.1.4 Dual hybrid methods

We now turn to another use of domain decomposition, this time to solve the
dual formulation (1.7) (RAVIART-THOMAS [C], THOMAS [A]), . In this
formulation, the main difficulty is to work in the affine subspace of H(div;Q),

(1.72) W; = {gf ]g}, € H(dived), divgf + 7 =0}
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When Neumann conditions are imposed on N C T, it is also necessary to ask
for ¢ P to satisfy

(1.73) 4, ElN = gs.

The idea of the dual hybrid formulation will again be to relax continuity,
this time for the normal trace ¢ - n at interfaces between elements. Condition
(1.73) will also be treated weakly. We thus transform problem (1.7) into

1
1.74) inf  sup —/A“lq -q d:c+_$_ / q, nv ds——/ g2 vg, ds,
( 4,6V vs,€Qy, 2o T = Jox = =" v

where, denoting as in Chapter 111, Y(2) = [, H(div; K), one sets

(1.75)
(1.76)

Vi ={qlg €Y(Q), divglx + f =0, VK},
Qp, = {olv € H'(9), vlp = 1),

Taking ¢ ,an arbitrary clement of V; and 4,, an arbitrary element of Qg,, one
may write (1.74) as

. 1 - . 5
inf sup —/A 1(go+ﬂf)‘(ﬂo+gf)dr
ZOEVO v0€Qo Y]

(1'77) +ZK:/‘;K(20 + Qf) 'Z}-(UO + ﬁyx)ds - -/N gZ(UO -+ ﬁg:)d‘9|

where Vp and @y are defined by (1.75) and (1.76) with f = 0 and g; = 0.

Denoting as in the previous section

o(q,v) = / q-nvds,
(g ) ; 8K~

problem (1.77) is equivalent to finding (p,, uo) € Vo X Qo the solution of

(1.78)

1.79) /QA—l_EO,gode(gu,uo)=_an—ng20-1,(10,6§1), Vg, € Qo,

(1.80) b(py» vo) = —b(‘ff,vo) +/ g2vods, Yvg € Vo.
= = N

This is now in standard form and we shall try to apply the general theory.

First note that we have

(1.81) Ker B = [ [ Hp(K)
K
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and
(1.82) Ker B = {q|q € Ho n(div; ), divg = 0}.

It is then clear that

(1.83) a(p, q) = /QA_lg_)-qd:c

is coercive on Vy, and to apply our general existence result one must show an
inf-sup condition, that is, for all v € Q = Qq,

(189 sup o)
. e Nerrareon = v K t,
9,€Vo llgollg(div;n) 0HY1Q/ Ker B

To obtain this, we first select, v being given, vy C @ such that

(1.85) { —Avp = 0 on each element K € 75,

UolaK = U|3K~

Now we take P, = gradvg and we have
(1.86) /]g{gdvolzdr: Z/ lgrad vo|2dz = Z/ vop,-nds = b(p,, vo).
o} = JK = YooK

Moreover, divp = 0 and, using Poincaré’s inequality, we may write

1
(1.87) oo e caiv,0) = lip,llo = llgrad vollo > “CT("ST)““OHI,ﬂy

provided the domain is bounded and Dirichlet conditions are imposed on a part
of 0Q (that is: D # @). From (1.85) and (1.87), we then have

b(F_O’ U) < sup b(ﬂy'”)

(1.88) — < )
”Eg”H(div;n) %0 “Q_D_“H(div;ﬂ)

[lvllos ker Bt < lvollin <

which is the desired result.

We now know that problem (1.79) and (1.80) has a unique solution (up to
an element of Ker B* for vp). Our concern is now to introduce a discretization
and, to do so, we shall again use the spaces defined in Chapter III. We define,
in the notation of Propositions I11.3.6 and 111.3.7.

(1.89) Vi = H M (K)
K
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where M}, (K) is one of the approximations of H(div; K) introduced in Section
11.3. We suppose flx € Dy = div(M(K)) so that it is possible to find ¢, ,
satisfying divg, st f = 0 in each K. In general, f can be approximated on
D, without loss of precision.

Using (I11.2.6), we also set
Qn = {vnlvn € H(Q), vslox € Tr41(9K), VK € Tp},
Qon = {vn € Qr} valp =0}.

We now have again the unusual situation where the approximation Qo is infinite
dimensional. However, only the traces on K are relevant to computation and
we do not really have to worry about this. Moreover the choice

(1.91) Von = {g, € Va,divg,|x =0, VK € Th}.

(1.90)

ensures that we have no problem with coerciveness of a(-,-). This comes from
the inclusion Vo C Vo. The only crucial point with respect to convergence is
to get a discrete inf-sup condition. We must now show that for any vos € Qon,
we have with & independent of & and vgp

b , U
(1.92) sup gy, von)

> kllvonllq/ xer B -
S PN 9/ Ker B

The correct situation is of course obtained for Ker B C Ker B'. To prove
(1.92) we shall try, as usual, to use Proposition 11.2.8. To do so, g, € V4 being
given, we should be able to build ¢/, = Il5g, such that

b(go - 20h>U0h) = 0’ vU()h € QDhy
flzgullo < Clig,llo

with a constant C independent of h. To get this result, we shall in fact build for
any g€ v, 9, = I1xg, in such a way that Myg€ Vo ifg € Va, and satisfying

(194) b(g—gh,vh) :0, V'Uh EQh

From the definition of 5(-,-), this will, a fortiori, hold whenever one has

(1.93)

(1.95) / {(g—TMng) nvpds =0, Yo, €V, VK € 75
8K -
Condition (1.95) is, however, nothing but a small linear system,
(1.96) / g, nuads = / q-nvy,ds, Yon € Tr41(0K).
Y S oK~ T

We have again the same problem as in the previous section: solving (1.96)
for g, depends on the degree of polynomials at hand. As we shall see, the cure
is, however, much simpler here. To fix ideas we shall therefore consider two
simple examples.
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Example 1.3: (k = 0 rriangular elements).

This is the simplest case, and it is easily seen that system (1.96) can always
be solved. Indeed the degrees of freedom of My(K) are the constant values
g = (gh -n); on each side e; of lenght £; of K when Do = Py(K). System
(1.96) takes the form (cf. Figure 1V.4)

Figure IV.4

$[(g2)22 + (92)3) = /BK(Q'E)/\I ds,
(1.97) 3@l + (q1)01] = /a (¢-n)As ds,
K

%[(‘12)52 + (g1)41) 2/ (g-n)rsds

9K
which can always be solved. Moreover, (1.97) implies, by summing the three
equations,

(1.98) (1151+(12£2+q:3£3:/ qh~nds:/ q-nds
8K~ 7

so that ¢ € V4 implies g, € Von. O

Remark 1.11: Let us recall that any divergence-free function of RT:(K) is
the curl of a stream function ¥, € Pyy1. If we want to check (1.96) only for
divergence-free functions, which is sufficient to get the inf-sup condition, we
can write, with 9% /07 denoting the tangential derivative of ¥ on 9K,

o Y .
(199) /aK E?Uh ds = ok 6—T1lh ds Yo, € Tk+1(6ﬁ),

where 9 is the stream function associated to g.

System (1.99) is then always singular, as for vy = constant on 9K both
sides vanish. For £ = 0 (and all even k) the system can always be solved. For
the case k£ = 1 of our next example, an extra linear dependence will appear
among the equations. We refer to Lemma 5.2, where a similar situation will be
encountered in the analysis of hybrid methods for fourth-order problems. O
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Example 1.4: Case k — 1.

We now use the space M\(K) = RT\(K) with Dy = Pi(K) (but this is not
the only possible choice). The degrees of freedom of 4, are now given by two
values (or moments) of the linear normal trace 4y -1 on each side of K, plus
two internal nodes which wil] be used (o obtain the divergence-free condition

When trying to solve (1.96), we are again facing the same pathology that
we had already met when studying primal hybrid methods: there exists a second-
degree polynomial ¢k , which we already called the “non-conforming bubble”
such that

(1.100) / 9, nérds =0, Vg, € Vi
8K

The standard cure i such a situation is to use a richer space for Vy: we
shall add to M (K) one element of the next member of the family, that is,
RT(K). Let us then define Y3k € P3(K) such that

Oag —

(1.101) =

K -

We can now take v, € P (K)® span (¥3k) and the system (1.99) becomes of
maximal rank and always has a solution. It is not unique and we may select the
solution of minimal norm, O

Remark 1.12; Taking 4, = 10t¢ax and working in the space RTi(K)® span
4,,» we could have found a solution of (1.96) and made it divergence free using
the internal nodes of RTy(K).O

The above examples are quite representative of situations generally en-
countered in hybrid methods: construction of approximations differ for odd or
even degrees. Whenever a difficulty arises, enrichment of Vi can be used to

satisfies no continuity on interfaces). The standard practice is then to use “static
condensation” and to reduce the problem to degrees of freedom in vp. Dual
hybrid methods can then be se€en as a variant of standard conforming methods
in which the shape of approximations inside K is not specified. As we shall see

- - S — - —
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in a latte{ part of this chaper, this will be very useful for higher-order problems
where C' continuity is required in the construction of elements,

We have stil] 5 technical point to set. To apply Proposition 11.2.8, we
must show that Iy is continuous, (uniformly in A) from v into Vou. But
this reduces to continuity in L¥(K) as divg = ¢ implies divg = (. This
is easily obtained by a scaling argument or,_equivalently, by tr?i?{gforming the

torsion of an elastic bar, the reader may refer to PIAN [A] and BREZ7] [B] for
the corresponding mathematica] analysis, ]

IV.2  Stokes Problem

We cot?sider oW another simple application of the abstract results of Chapter I1,
In parucglar We present a few examples of stable discretizations of the Stokes
problem introduced i (13.11) and (IL1.31). Much more will be said on thjs

problem in Chapter VI. Let ug recall very briefly the notatjon and the results
already obtajned. We had

a(u,v) := Qlt/g(ﬂ) tg(v) de,
0 &
b(v,q) := —/ gdivyde,
o
V=(H3(2)? ¢ = L*Q), f e (L*(2))? given
and we were Iooking for v €V, p€Q such that

(2.1) {“(H’E) teup)=(f1), we v,

We also saw that in this case Ker Bt jg the one-dimensjonaj subspace of constants
anfi that (2.1) has a unique solution (u,p) in V x (/R (that s, the pressure js
unique up to an additjve constant). We have now to choose Subspaces 1, ¢ v

22 Ve = (L)% 0 (42,

(2.3) Qn = g,
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However, it can be shown that this choice does not satisfy the inf-sup condition.
Nevertheless, we can enrich (2.2) so that, in the end, the new choice will give
a stable and convergent approximation to the Stokes problem (2.1). We set as
in (I11.2.22)

@4 By ={b(x) € HY(Q), o)lr € P(TY N HYT), VT € T,).
Hence each b(z) of B, , on each triangle T, has the form a(T) Ai(z) Ay(z)
As(z) with «(T') constant in T. Following ARNOLD~BREZZI-FORTIN [A]
we set

(2.5) Vi := {£{(Th) ® By)?

and we want to show that (2.5) and (2.3) is a stable and convergent approx-

imation of (2.1). For this we will apply Proposition 11.2.8 with W — V and
S = @/ Ker B! and we have therefore to construct an operator Iy, such that

(2.6) /(div(y —hv)gndr =0,Vg € Qh, YveV,

4]
2.7) IMavllv < elpfly,  Voew
We shall use the technique of Proposition 11.2.9 with W =V so that we first
take for IT; the operator 74 of Proposition 111.2.1 and Corollary 111.2.1. We,
thus, set

(2.8) vk = ravlx

which from (111.2.15) yields

(2.9) v~ )i < e ( > h}{:"‘!ﬁh,m)-
K'nkK ¢

In particular, (2.9) implies the first condition of (11.2.30),
(2.10) Mzlly < cliyflv.

We now define the operator Iy : 'V — (B3)? by means of
(2.11) / div(Il,v — v)gy de = /(2 —1M2v) - gradgs dz = 0, Vg, € Q,.
o a

Since gradgy is piecewise constant, (2.11) is easily satisfied by choosing, in
each K, bubbles with the same mean value as v. It js casy to check that

(2.12) IMavllr ke < ek [lvllox, Vo e V,r=0,1.

§IV.2 Mixed and Hybrid Finjte Element Methods 157

From (2.11) it is then immediate to check that the second condition of (IL. 2.30)
is fulfilled and from (2.12) and (2.9) we easily have the third condition.

We can thus apply Proposition I1.2.9 and the inf-sup condition holds. Now
we apply Theorem 11.2.1 and we obtain

(2.13) e~ wylv + ||p - Prllo/m < ek (fluflpq + pl1),

that is, an optimal error estimate,

We now analyze another possible simple discretization of the linear Stokes

problem, In particular, we Iry to use a piecewise constant pressure field. It js
€asy to see that taking

(2.14) Vi = (83N HL(Q))?,
(2.15) Qn = £,

We can again apply (I1.2.9) and define Ny : vy by
(2.16) Ty =T+ M,y - I v),

where II, is stjll chosen as in the Previous example and where 1T, : v — Vi
is defined by

(2.17) Myw = 0 at the vertices; /(ng —w)ds =0, Veeg En.

It is now elementary 1o check that

(2.18) / div(y — Nyv)qdz = / (v - M2v) -ngds =
K 8K h
for all ¢ ¢ £J and that

(2.19) IManfly ke < chp! lellox, VK e,

(2.20) e — w1y + llp — Pullo/m < ch (lllz,0 + [py).

:A third possibility would be to use a nonconforming approximation of V. For
Instance we may chooge again QQ = £9 and
2.2n

Vi = {v; € (EI'NC(PI,T;,))Z, vanishing at the boundary midpoints)
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(2.22) on(unr) = 3 [ emadu - gradu o,
K
(2.23) ba(vn,qn) = ; /K div vy, qn dz,
and consider the problem
(2.24) an(up,vp) + baloy, pr) = (fi08), Yua € Va,
(2.25) baun, qn) = 0, Vi € £3.

We may now construct I, : V — Vj, by
(2.26) / (Map—v) - 4ds =0, Vo€ Ro(AK),
3K
and again it is easy to see that

(2.27) Mpuly,n < clulin,

(where as usual [v4[3 , = 3" fonl} ) and

%
(2.28) ba(v — Mpu,qn) = 0, Vgu € £,
which implies, by Proposition 1.2.17,

>ec> 0.

. bh(y,) q)
(2.29) inf sup ———
ceQn/m vevy 2ialldllo/m

On the other hand, we also have

(2.30) an(vp,va) = alluallig, Vun € V.
We may now apply Proposition 11.2.16 and get
(231) le — wylin +llp = palle.m < ch + En(x, p),
where
En(w,p) = sup ]y {on(u,us) + ba(us, p) — (£ 24)}
v, EV
@) = sup A Y [ lemadu) ] -y ds
zhEVh K 8K
< chilullzn

so that in the end we have the optimal estimate
lu — wptin + I — pallg/m < chilullza

We shall present many other approximations of Stokes problems in Chapter VI
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IV.3  Elasticity Problems

In our list of quick applications of the above abstract theory, we consider now
some simple applications to linear elasticity problems, If we set p = Adivu,

o(u,v) = /n 2ug(u) : g(v) de,
b(l_l,q)z/ndiqudx,

V= (H;(Q), Q=LXW),
with the notation of Example 1.2.2, we may write (1.2.21) as
a(y,v) +b(y,p) = (f,v), Vo€V,

(3.1) 1

b(y_rq) = X(PzQ); Vq € Qr

(for the sake of simplicity we took I'p = 0€2). When X is “not to large,” (3.1)
has obviously a unique solution by the Lax—Milgram theorem and Kom’s first
inequality, that is,(cf. DUVAUT-LIONS [A])

(3.2) /n e ds > allolZy, Vo e (HA(Q))

Existence of a solution of (3.1), actually, is still true for any finite value of ) ;
however, it is clear that, for A larger and larger, we have to deal with a problem
of the type (11.4.7), where now 1/ plays the role of ¢. Following the results of
Proposition 11.4.1 we see that in order to deal with a linear elasticity problem
where )\ is large (nearly incompressible case) we must choose spaces Vy and

Q@n which satisfy the inf-sup condition. For instance with the choice (2.5) and
(2.3) we have

lu —uplly +llp ~ palle < ch(Jlullz + lpl1)
with ¢ independent of h and X. [

We want now to see what can be done in a truly mixed approach to (1.2.21),
that is using

(3.3) T = H(div;Q)s, U= (L*Q)),
[(ip.o, 1
(3.4) a(g_,g‘__) .~L[2ug T +(/\+H)
3.5) b(r,v) = / div(z) - pdz.
Q

tr(g) tr(;)] de,
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Note that here we are using (£, U) instead of (V, Q) as in Chapter II. It is
clear that, taking as in (2.5),

(.6) Th = (£] ® B3)},
(3.7) Un = (£1)7,
we have

L e

and that we may construct I : ¥ — Tj such that

3.9 bz —Tpz,u) =0, Vg€ U

To see this last point, note that

(3.10) b(r — Myr,v) = / div(z ~ p7) - vdae = — / (r — ly1) : () dz,
L Z o XA < 0= )-8

and that g(g) can be represented by three (independent) constants on each K.

Hence we may proceed as in (2.12), defining

3.1 Mhz = Wz + Moz - Oy 1),

where I1; and [, are defined as in (2.8) and (2.11). It is also clear that 11, as
given in (3.11) verifies

(3.12) Mazlle < clizllo,

so that using (3.9) and (3.12) we have as usual, using Proposition 11.2.8, that
b(r,

(3.13) inf  sup (z,9) >c>0.

$EUL ZEL, lizllolgly =

Note that here we are using & = (L?(Q2))? and U = (H}(Q))? ; this does not
correspond to a truly mixed approach, but is allowed here due to the choice
(3.7). Now from (3.8) and (3.13) we have the existence and uniqueness of the
solution of the discretized problem and, from Theorem I1.2.1, the usual error
bounds

(3.14) iz - Mo + llu -«
< c{éienth llz - zllo +2i€nl§h flu — th} < erh||uf].

A simple duality argument (as in Section 11.2.7) would also show that

(3.15) e = uflo < b Jlalfo.

However, as we have noticed before, the troubles arise when we have to deal
with a very large A (nearly incompressible materials). In fact, it is clear from
(3.8) that the constant ¢ which appears in (3.14) goes like A when A — +oo
and the quality of the approximation is jeopardized. Actually, the situation is
not as bad as it seems, because, as in Proposition 11.2.4, we do not need (3.8)
to hold for every 7 € £ (or Xp) but only for = € Ker B (respectively, Ker By).
In particular, the continuous formulation (1.3.48) does not break down when
A — oo because of the following proposition.
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Proposition 3.1: There exists a constant ¢ > 0 such that, for every r € (L2(Q))?
satisfying - ’

(3.16) 7)dr =
Atr(:) dr =0,
we have
(317 llzllo < eIl llo + fidivzlfo).

Proof: It is clear that it is enough to show that
(3.18) lltr(Dlle < e (Pl + Jidivro).
For this, note that (3.16) implies the existence of a v € (H})? such that

(3.19) divy = (1),
(3.20) llelly < efjtr(z)llo.

Now from (3.19) and (3.16) we have
(o)l = [ er() divode
&
= / r:édivude
0= =
= 2/ 7 (grady — (gradv)®) dz
o 1d

:~2/£D;g1_’_gdydz'—2/d_iv£.gdz
1) 0 -

< 2z Mo lull: + 2Ajdiv zllo fjullo

(3.21)

and from (3.20) and (3.20) we get (3.18). O

It is clear that any stationary point of (1.3.48) must sati
- sfy (3.16). 1
work now in the subspace ) fy (3.16). If we

(3.22) I {;};EE,LU(;)dz:O},
we know that the set

(3.23) KerB={z|lreX, b(zr,u) =0Vy e U}
is precisely made of tensors satisfying (3.16) and

(329 divz = 0.
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Hence, from Proposition 3.1 we have
(25 a(nn) 2 () Izl = cllirlyaivy., Yz € Ker B,

If we had now Ker By, C Ker B we would get in (3.14) a constant ¢ independent
of A. We might think to prove (3.18) for 7, € Ker Bh.

Unfortunately we can construct examples of I, € Yn such that we have
Jur(z,)de =0 and

(3‘26) b(;hagh) = 07 VQ_ € Uh,

but 1? = 0 and tr{r;,) # 0. For instance, on a uniform mesh, take 7,11 — 122 =
:}:d)“(the unit bubble in each K) and 7332 = 0 (the sign + of ¢ changing on
any pair of adjacent triangles). Globally, one has [ tr(z,)dz = 0 due (o the
alternating signs. It is also easy to see that (3.26) is satlsﬁed Hence, (3.17)
is not true, in our case, for 7, € KerBy. We see again that the property
Ker B, C Ker B (that here is unfortunately false) is a very useful one.

The problem that we face is essentially due to the fact that the bilinear
form a(-,-) is not coercive on the whole space g(div,ﬂ),, but only on the
subspace Ker B defined by (3.23). We shall now show that using the results of
Section L5, that is by modifying the variational formulation, we can obtain an
approximate solution with error bounds independant of A.

Let us indeed consider instead of (1.3.48) the saddle-point problem,

1 1
inf su —/ v 2dz+————-—/ trg2d1‘+/ dive+f)vdz
g gp 4u nl“ | 2(A+p) nl 2l n( =
(327 =

+S/ ldive+f[2dz, « >0,
2 ) - -

for which the optimality conditions are now

/ —1—QD Ddz 4+ /tro trzdz+ a/(dxvo’+f) (divz) dz
2u= (Atp)

(3.28)
+ / (dive) -udz =0, ¥z € (H(div, Q).
Q

(3.29) /ﬂ(divg+ f)-vde =0 Vue (L*(Q)%

But (3.28) and (3.29) are clearly equivalent to the original formulation. How-
ever, we now have, instead of (3.4),
(3.30)

1
alg,1) = 5;/{12“

~Dd:c+——1——/trgtrzdz-{—a/divg_-div;d:c
= Atputog = 7 a = =
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and from Proposition 3.1, we get the coerciveness property
(331) a(j!_» g) 2 g llgllZ(le'n)’ .

where ap depends on «, u, and ¢ but is independant of A. On the other hand
the bilinear form &(r, v) defined by (3.5) is unchanged but we now need the
inf-sup condition (cf. ARNOLD-DOUGLAS-GUPTA [A])

b(z,v)
(3.32) inf sup = > k> 0.
vE(E2(9)? ze(H*(a))} irth floflo =

Now, we introduce the discretization already defined by (3.6) and (3.7). As
we now have a coerciveness property on the whole space X, the only delicate
point is to obtain a discrete inf-sup condition. We use Proposition 11.2.8 and
the operator II; defined by (3.11). Indeed as in section IV.2, we deduce,

(3.33) Mhzlfs < clizih-
But (3.32) and (3.33) imply, by Proposition I1.2.8, that we have

(3.34) inf sup bz, 24)

>ko>0
vevi ren Iz, llslelo =77

with ko independant of h. From the standard theory, we therefore obtain an
error estimate

lz-gyls + l-sall < & { inf llo—mls + inf, Ju-unllo}
< Oh(lals + el

(3.35)

Augmented formulations, therefore, appear as a powerful tool to overcome diffi-
culties associated with problems of coerciveness and enable us to bypass the in-
clusion of kernels property which is very difficult to obtain in practice. We shall
present in Chapter V examples where one can also employ similar arguments
to avoid the inf-sup condition. Examples of applications to elasticity problems
can be found in FRANCA-STENBERG [A] and in BREZZI-FORTIN-MARINI
[A].

We shall see other examples of elements (for linear elasticity) which can
treat the nearly incompressible case in Chapter VII. Other variational formula-
tions of the elasticity problem can be found in STENBERG [B].
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IV.4 A Mixed Fourth-Order Problem

1V.4.1 The 7y — w biharmonic problem

Let us now see, as a new example of application of the abstract results of
Chapter 11, some simple cases of fourth-order problems. We shall start with
formulation (1.3.54) which we may now rewrite in the form (I11.2.1) by setting

(4.1 V= HY(Q), Q= H)Q),
(4.2) a(w,qS):/wd)dz, Yw, ¢ € TY(Q),
N

@3 e = [ endppadsda =, Vae BYQ), ¢ € M@,
0

We shall denote by (w, 1) instead of (u, p) the solution of the problem in order to
be consistent with the usual physical notations. It is easy to see that we are now
in the situation of Section I1.2.5: the bilinear form a(w, ¢) is not coercive on V'
(nor is it on Ker B but only on H = L?(Q)). A loss of accuracy is therefore to
be expected. Another pitfall is that we cannot use the abstract existence results
of Chapter 11 for the continuous problem and that we must deduce the existence
of a solution through another channel. In the present case we know that the
solution of our mixed problem: find ¥ € H}(2) and w € H'(£2) such that

/uq&dr—k/g@dz])-ggdqﬁdz:(), Vo € HY(Q),
(4.4) a a

/g;gdw-gr_a_dpd:c:/fpdm, Yu € Hy()
Q Q

should be a solution of a bibarmonic problem
(4.5) A =f, e HAR).

From a regularity result on the biharmonic problem, we know, for instance if
is a convex polygon (LIONS-MAGENES [A], TEMAM [A], GRISVARD [A]),
that for f € H~(£), the solution of (4.5) belongs to H3(£2), so thatw = —Ay
belongs to H!(£2). It is then direct to verify that we have thus obtained a
solution of (4.4). This is an example of an “ill-posed” mixed problem. It
should be remarked that the discussion of existence made above does not apply
when the right-hand side of the first equation of (4.4) is not zero.

To get a discrete problem we take, in the notation of Chapter III, we set
(4.6) Vi=2LL Qn=CLinHNQ), k>2.

The case k = 1 requires a more special analysis (FIX-GUNZBURGER~-NICO-
LAIDES [A], SCHOLZ {C], GLOWINSKI [A]). We then have that the constant
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S(h), appearing in (11.2.51), can now be bounded by S(h) < ch~! so that a
direct application of Proposition I11.2.13 gives

@7 ko — wallo + 1% — ¥l < ch*~ L.

Indeed, the inf-sup condition is quite straightforward. The operator B
is nothing here but the Laplace operator from H!(Q) to H~!(), which is
obviously surjective. To check the discrete condition we use the criterion of
Proposition 11.2.8; given w € H'(2) we want to built wy, € V, such that

(4.8) / gradw, - grad pp dz = / gradw - grad pp dz, Vpp € Qp.
Q 0

We recall, however, that we have chosen @ C V3 so that (4.8) will, a fortiori,
hold if we take pj € V. But (4.8) is then nothing but a discrete Neumann
problem for which a solution exists and can be chosen (it is defined up to an
additive constant) so that

4.9) llwally < ellwlit-

It must be noted that the condition @y C Vj, is essential to the above result.
In practice this is not a restriction as (4.6) is a natural and efficient choice.
Result (4.7) is far from optimal and may suggest at a first sight that the method
is not worth using. It can however be sharpened in two ways. First it is
possible to raise the estimate on |w — walo by half an order (SCHOLZ (D],
FIX-GUNZBURGER-NICOLAIDES [A]) by a quite intricate analysis using
L% -error estimates. The second way is a more direct variant of the duality
method of Section 11.2.7 and shows that the expected accuracy can be obtained
for € H3(R), that is,

(4.10) 1% — ¥nllt < ch”,

and under a supplementary regularity assumption
(4.11) ¥ — ¥allo < ch*t1.

We refer the reader to SCHOLZ [A,D], FALK [A], BRAMBLE-FALK [A] and
FALK~OSBORN [A] for this analysis.

On the other hand, the particular structure of problem (4.4) allows the
use of sophisticated but effective techniques for the numerical resolution, (cf.
CIARLET-GLOWINSKI [A],GLOWINSKI [B], GLOWINSKI-PIRONNEAU
[A]) so that this method and its variants have a considerable practical interest.
In fact it provides a correct setting for the widely used ¥ — w approximations
in numerical fluid dynamics. We refer to GIRAULT-RAVIART [A] for more
informations on this subject.
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Still in the case of fourth-order problems we could also consider instead
formulation (1.3.59) which is more related to plate bending problems. We now
set

(4.12) V=(H'(Q)} Q=HQ)

and we define, following (1.3.59) for g and 7 in V,

2
(4.13) a(g,r) = 1—2—(—1E—ta—-2 _/Q[(I +v)a: - v ti(g) tr(r)] dz.

In order to consider a weaker form of the saddle point problem (1.3.59), we
introduce

B on, av
(4.14) b(v,1) _/(dIV‘F) g_dvdz—/z oz, Br,

This enables us to look for w € H(Q) instead of H2(€1), the second boundary
condition being implied by this variational formulation as a natural condition.

This is again an “ill-posed” mixed problem: we must obtain the existence
of a solution through a regularity result on the standard problem.

Two approaches have been followed in the approximation of this mixed
problem. One of them consists in taking (MIYOSHI [A]):

(4.15) Vi = (L), Qn=ELLNH(Q).

With respect to (4.14) it is, however, possible to use a second approach and to
work not in V = (F'(2))? but in the weaker space (1.3.43)

(4.16)  H(div:Q), = {z]n, = 7., 7, € L}(Q), divz € (L*(Q))*}.

Discretizations of this space can be built through composite elements as we
shall see in Section VI1.2 JOHNSON-MERCIER [A], ARNOLD-DOUGLAS-
GUPTA [A]) .

In the first case the results are the same as for the i — w approximation
discussed above. We get, by Proposition I1.2.13 an error estimate which is
(h®~1). Duality methods (FALK~OSBORN [A]) enable one to lift the estimate
on t at the right level. For the second case we can have optimal error estimates
(see the above references).
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IV.5 Dual Hybrid Methods for Plate Bending Problems

We consider now as a final example an application of our general theory to
hybrid methods. We go back again to Example 3.8 of Chapter I and set, for the
sake of simplicity, v = 0 and Et3/12 = 1. The consideration of the true values
would not change the mathematical structure of the problem, but would result
in more lengthy formulas. The condition D3(z) = f in (1.3.63) is, in general,
difficult to enforce directly. Hence, following PIAN-TONG [A], we may think
of working with stresses satisfying D3(r) = f inside each clement of a given
decomposition. This will imply that we have to enforce some continuity of the
stresses by means of a Lagrangian multiplier; moreover it will be convenient
to assume f € L#(Q). In order to make the exposition clearer, we need some

Green’s formula. We have indeed, on any triangle K of a triangulation 7 of
Q,

5.1) /K; . D (v)ds = /h D3(z)v dz + /a (M ,,,,(7)6_ ~ Kn(z)v) ds
for all £ € (H2(K))? and v € H?(K), where,

(5.2) Mpn(z) =(z n) 1,

d i,
(5.3) Kn(z) == 3 tr(z) - g[(; n)-t], ¢ = tangent unit vector.

It is essential, in the definition of K,;, to consider the derivative 8/8t wn
the distributional sense, that is, to take into account the jumps of (r -n) -1 at
the corners of K (the so-called corner forces).

It is easy to check that the condition D3(z) = f in Q is equivalent to

D3(z) = f in each K,

5.4 Jdu _
;/aK[MM(;);?;; ~ Ka(r)v]ds = 0, Yv € HY(Q)
Setting
Jv
b(z,v) =Y (M,m(;)% ~ Kn(z)o) ds
(5.5) K /3“

EL;:_Q__Z(UW—EKI/K D3 () da,

(5.6) Vi(Th) = {z € (L*(Q))i, D3(z) = f in each K},
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the problem can now be written

(5.7) inf sup 3{|z||3 ~ b(, v).
;ev,(T,,)ueHg

If now ¢/ is a given clement of Vi (Th), that is, a particular solution of Di(g) =
S in each K, we have

(5.8) (e D -tz w) =0, vrew(m),
. be®+a,v)=0, woe HE(Q),

where obviously g” +gf "= g. Problem (5.8) has now the form (11.1.5), where
V=WW%),Q= HE(Q), a(g,1) = (g,1), and b(z,v) is given by (5.5). The
right-hand side is obviously ~(g/, 1) for the first equation and —b(c”f,v) for
the second equation. It is natural to use jn V the L%-norm, and in @ the norm
llvllo = 2,vlly = 12, v{lo. It is clear that condition (IL.1.8), that is, the
ellipticity of a(-, ), is trivially satisfied in the whole V' (and not only in Ker B)
with @ = 1. A different value for E, 1, and v would obviously yvield a different
value for o but the ellipticity will still be true. It is clear that Ker B* cannot
be empty; indeed, any v with support in a single K will satisfy b(r,v) = 0 for
all 7, and hence is a zero energy mode. However, it is not difficult to see that
Im B is closed.

Proposition 5.1: The image of B is a closed subset of Q' = H-2(Q).

Proof: We have to show that if a sequence Xn = B_z_n converges to y in H~2,
then y = Br for some T € Vo(7h) = V. We note first that

(5.9 if 7€ Vo(Th) and ¢ € HS(Q), then b(r, ¢) = (;,sz,

which is quite obvious from (5.5) and (5.6). Now let ¥ € HZ(Q) be such that
A%¢ =y and let Z=D,¢ (sothat D37 = y). For every ¢ € H? we have

(5.10) B -2z = (D;£a¢)>}1—’x113 =(z,D,¢).

Now, since x,, = Bz — xin H~2, we have

G (z,,D,¢) =b(z,,0) = {BZ, 8} = (xn, 6) — (x,9) = (z.D,4),
that is, (;n—g,gzgf)) = 0 for all ¢ € HZ(Q). This easily implies D37 = 0 in

cach T, 5o that 7 € Vy(7). Hence ,(x,d) = (z.D,9) = b(z,¢) = {Br, 4),
that is, y € Im B. 0O
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Proposition 5.2: We have Rer B* = [T H2(K).

K
Proof: It is obvious from (5.5) that if ¢|, ¢ H2(K) for all K, then b(r, ¢) =

0 Vr, and hence ¢ € Ker Bt. Therefore we need only to prove that Ker Bt C
I« H3(K). For this, let ¢ € Ker B?, (hat is,

(.12 bz,¢) = (z.D,¢) =0, VI € Vo(Th).
We want 0 show thay ¢ € [1p(H?K)), that is,

(5.13) bk € HY(K), VK.

Let 4 be defined in cach K by

(5.14) Y EHI(K) and A%y = O,

clearly, (;,in/)) =0 for all T in Vo(74) so that from (5.12)
CI) M- = @u-e) =0, vee Vo(7h).

But now D3 D (.1/) ~¢) = Ay — #) = 0 in each K, so that we can take
=D,y —.qﬁf. " (5.15) and obtain D,(y ~ ¢) = 0. Since both Y and ¢ are
mn Hg(2), this implies ¥ = ¢, 50 that from (5.14) we get (5.13).0

Proposition 5.3: We have

(5.16) I6lle/ ker e = 11D, o,

where @ is the function ip HE(Q) such that

(5.17) é _qu € HY(K)  for each K,
(5.18) A% = in each K.

Proof: By definition we have

(5-19) ”¢”Q/Kerl}‘ :1&6}&53‘ ”¢_¢HQ

Now from Proposition 5.2 and the definition of lIxlle = ”22)(]]0 we have

(5:20) léllo/ kerpe = WEHinlflg(K) 12°(¢ ~ ¥)lo .

It is now an casy matter to check that, for each K,

5.21 i - = i 5
G2 it D6~ v = (s baie 122 Y18 1 = 1D, 8112

for ¢ defined in (5.17) an (5.18). Hence (5.21) and (5.20) prove (5.16).0
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We are now able to prove the inf-sup condition

sup — L) RN
sz 2 ldbldlerxern e bl 2;¢l
~HR,8l

because ¢ — ¢ is the projection (in @) of ¢ onto Ker B? so that éand ¢ — ¢
are orthogonal in Q).

Remark 5.1: A way of getting rid of Ker B* (which is infinite dimensional) is
to consider as a space of Lagrange multipliers the space

(5.23) 0= {¢|é € HXQ), A2¢ =0 in each T}.

This is what has been done in BREZZI [C], BREZZI-MARINI [A]. The draw-
back in the choice (5.23) is that the actual transversal displacement w does not
belong to @ so that, as a solution, we have the unique function & in Q that
coincides with w (with its first derivatives) at the interelement boundaries (as
in (5.17) and (5.18)). O

Let us continue our analysis of problem (5.8). We already noted that (11.1.8)
is satisfied in our case. Hence, we have to check that the right-hand side of
the second equation in (5.8) (that is, —b(¢’,v)) is in Im B; this means that
we have to find a particular solution of the second equation of (5.8), which is
obvious by taking ¢° := D w — g”.

We can now go to the discretization of (5.8); for this we have to choose
subspaces Vi C Vo(7n) and @, C Q. For instance, for any triple (m,r,s) of
integers we may choose

(5:24) Vit = (£ (Th))s N Vo(Th),

(5.25) Qy* = {¢ € HA(D), b, € T-(8T), g% € R,(8T), VT € Ta}.
arT

Note that ¥}, is made of tensor-valued polynomials of degree < m which are
completely discontinuous from one element to another and verify D37 = 0 in
each T'. On the other hand, Q4 is clearly infinite dimensional (whicl;is quite
unusual); however this does not show up in the computations, where only the
values of ¢ and 9¢/0n on £, are considered. According to Proposition 11.2.1
we now have to choose (m,r,s) in such a way that Ker B], € Ker B*. This
means, in our case, that we have to show

(526 if ¢ € QY and b(z,4) = 0, ¥z € V" (that is, if ¢ € Ker B}),
' then ¢ = grad¢ = 0 on &x( that is, ¢ € Ker BY).

The proof of (5.26) (or, rather, the finding of sufficient conditions on m for
having (5.26)) will be easier with the following characterization of V™.
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Lemma 5.1: We have
(527) Vit = Sl(Em41(Th))%]

where 5 is defined for ¢ = (a, #)

Y 0ar/ Oy ~(0a/02 + 08/0y)
X ( ~L(8a/0r +08/8y) 0B/ds )

(vl

Proof: The inclusion S[(£7,,,(7x))?) € V;™ is trivial; the opposite inclusion
is an exercise. (See BREZZI-MARINI [A] for more details.) O

We notice now that if £ = S(g),then

0
5.28 b(r, —§ dv. —
( ) (; v) K/B gradv atgds,

where ¢ is the tangent to 9T. We also notice that

¢ € H3(Q) and gradé = constant on &,

(5.29) { i
imply ¢ = 0 and grad¢ = 0 on &,.

We may now use (5.27)~5.29) in (5.26) which becomes

i d
if $ € Q,* and / rad¢ - —qgds = 0. V. 0 2
(5.30) h ; i O ¢ 525 =0, ¥g € (£,11(Th))*,

then grad ¢ = constant on &,.

Now (5.30) is implied by

. d

if ¢ € QF° and do - —qds = 2

530 { $EQy and | gmds- Sqde=0, ¥g€ (Prsi(K)),
then grad¢ = constant on 9K.

(but not vice versa). Now let k be the degree of grad ¢ on 87, that is,

(5.32) k = max(s,r - 1).

The following technical femma is proved for instance in BREZZI-MARJINI
(Al

Lemma 5.2: If ¢ € H}(K) and ¢{,, € Pe(e,) (i = 1,2,3) and if

)
(5.33) ¢ Lds =0, Vge P(K),
[T




ST me e

172 Various Examples §IV.S

then
(5.34) Ple, =cli(s)+er (i=1,2,3),

where, on each e;, we define €, as the kth Legendre polynomial (normalized
with value 1 in the second endpoint in the counterclockwise order). 00

Formula (5.34), for & odd, implies directly that ¢ = constant on 9. We
have thercfore a first result.

Proposition 54: If m+1 = k = max(r — 1,s) and k is odd, then (5.31)
holds. O

If now m + 1 is even, we can apply Lemma 5.2 to both ¢/dz and 0¢/dy

and get

F) :
(5.35) P lira, gy,

Jdz Yy
on cach e;. If now r — 1 # s, there must exist a combination of 8¢/dz and
0¢ /0y on each e; (to get H¢/dn) which has degree lower than k). This easily
implies that both ¢/8z and 8¢/dy are constants on K. We have, therefore,
the following result:

Proposition 5.5: f m+ 1 = k = max(r ~ 1,s) and r — 1 # s, then (5.31)
holds. O

We are finally left with the last and worst case in which r — 1 = s is even.
We have several escapes. First, brutally, we may take m +1 = k + 1. It is
easy to see that then (5.31) always holds. As a second possibility, we may take
m+ 1 = k and enrich (£5,,,(73))? into (£3.41(71))2,, by adding, in each
K, a pair of functions ¢ in (Prmy()? such that 0q;[0t]e, = £ (j = 1,2 and
i = 1,2,3). Again it is easy to check that (5.31) is satisfied if we take the
enriched space (£3,,,(74))2,, instead of the original one. Then, of course, we
must consider Vi, = S[(£],,,(73))2,,] instead of V. Finally, we might give
up (5.31) and go directly to (5.30). It is easy to check that in (5.35) the values
of ¢, c1, 7, and y; must remain constants from one K to another, due to the
continuity of grad ¢|, across the edges. Hence, since ¢ € H2(Q), we must have
¢=c1 =7 =7 = 0and actually (5.30) holds for m+1 =k = max(r —1,s)
in any case, that is, also for r — 1 = s = even. However, we shall see in a
moment that (5.31) has other basic advantages over (5.30) that we are not very

willing to give up. We summarize the results in the following theorem.

Theorem 5.1: The condition Ker B C Ker B! holds whenever
(5.36) m+12> k= max(r—-1,s).
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Moreover, (5.31) holds when (5.36) is satisfied, unless r — 1 = § — even.
Inkthlat case (5.31) is satisfied by taking m + 1 > k or by using an enriched
Vienr (between V¥~1 and V¥) as described above. [

The condition Ker B}, = Ker B implies, by Proposition 11.2.1, the exis-
tence of an operator I, from Vo(7n) to V;™ such that

(5.37) Mz-Thz,v) =0, Vveqp’.

However, in view of the use of Proposition 11.2.8 we would also like to
show that there exists a I, which satisfies (5.37) and

(5.38) IMazllo < clizllo, Ve Vao(Th),

with ¢ independent of h. (Since V™ is finite dimensional, (5.38) will always
hold, but the constant might depend on 4.) Now, if (5.31) holds, we see that Iy
can be defined element by element. But, the dimension of V"' |k depends on m,
but not on h. A continuous dependence argument on the shape of the element
€an now prove (5.38) without major difficulties (but, to be honest, not quickly);
we refer to BREZZI-MARINI [A] for a detailed proof of (5.38). Once we

have.(5.37) and (5.38) we apply Proposition I1.2.8 to prove the discrete inf-sup
condition. Then Theorem II.2.1 gives immediately

lz = g, flo + 1D, (w — o

(5.39) <C{ inf |le® - zllo + inf (D (w = o)l }
= ;Eth = = ¢EQ;" =2 o

where iy is the (unique) element in Q}* that satisfies A%y, = f ineach K
and belongs to the set of discrete solutions.

Theorem 5.2: If m4-1 2 max(r—1,s) (and m+1>sforr—1 = s is even)
we have

»

G40 Nz = gyllo + 11D, (w — Ga)flo < ch? (lollesz + 3 lla! 112 )
T

with t = min(m + 1,r — 1,s).

Theu proof is obvious from inequality (5.39) and standard approximation
results,

We end this section with a few computational remarks. First we notice that
our discretization of (5.8) has obviously the matrix structure

A B
(5:41) ( i 0) :



174 Vanous Examples §IV.5

where A, corresponding to the approximation of the identity in V;™, is obviously
block diagonal because V;™ is made of discontinuous tensors. Hence one usually
makes an a priori inversion of A, to end with the matrix B*A~'B, which
operates on the wy unknown and is symmetric and positive definite. However,
the computation of the right-hand side is, in general, a weak point in the use of
dual hybrid methods, unless f is very special (zero, Dirac mass, constant, etc.)
and allows the use of a simple of. A few computational tricks for dealing with
more general cases can be found in BREZZI-MARINI [A], MARINI [A,B].
Here we recall, from BREZZI [D] a simple method that works for low-order
approximations (more precisely, when t in Theorem 5.2 is < 2). We define
first the operator R = orthogonal projection onto Vi. We remark then that the
discretizations (5.24) and (5.25) of (5.8) may be written as

(5.42) {(gi +ef,0) = (Rywn 1), VZEV

(gh +gj122¢):(fa¢)> V¢EQh

Solving a priori in g_‘; from the first equation and substituting into the second
equation we obtain

(5.43) (RD,wn,D,8) = (f,¢) - (¢/ - Re!,D,8), Vo€ Qn
Now the left-hand side of (5.43) corresponds to the matrix B'A™'B acting
on the unknown wy. The right-hand side is actually compuiable because both
(f,¢) - (¢/,D,¢) and (Rg!,D,$) depend (looking carefully) only on the
values of ¢ and its gradient at the interelement boundaries. However, the com-
putation, in general, is not easy. Therefore, in some cases, it can be convenient
to use a rough approximation of it, for instance

(5,9~ (! - B! D = 3 LS ),
K =1

where the ¥, are the vertices of K. It can be shown (BREZZI [D]) that this
involves an additional error of order O(h?) (essentially because Vi contains all
piecewise linear stress functions and therefore llef — Ra’|lo < ch?) and hence,
this procedure is recommended whenever ¢ < 2 in (5.40).

Finally, a few remarks on the choice of the degrees of freedom in V,* and
Q7%°. As we have seen, the g?‘ unknown is usually eliminated a priori at the
element level due to the complete discontinuity of V™. As a consequence, the
choice of the degrees of freedom in V™ is of little relevance. In general, it is
more convenient to start from (£5,,;(7x))? and to derive Vj through (5.27).

When m is “large” (say m > 4, to fix the ideas), however, the resulting
matrix A can be severely ill-conditioned unless the degrees of freedom in Vi
are chosen in a suitable way. We refer to MARINI [A,B] for a discussion of
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this point. On the other hand the degrees of freedom in Q7" are the ones that
count in the final stiffness matrix, and, besides, they have to take into account

the C! -continuity requirements. We list in Figure IV.5 some commonly used
choices for different values of » and s.

s=1

r=3 r=4
s=3 s=3
r=25 r=25

@
[ -]
N
]
(VL)

Symbol Values of

¢
grad ¢
0%¢/0,0:
D

0¢/0n
d¢/ot, B /On, 526 /0,0

[F]XI@@.

Figure IV.5
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Remark 5.2: It is impossible to say what is, in general, the best choice for r and
s. Numerical evidence shows obviously that the accuracy/number of degrees
of freedom ratio is improved for large » and s, at least when the solution is
smooth. However it is clear that the simplest (and most widely used) choice
r =3, s = 1 allows a much easier implementation. Similar considerations also
hold with the choice of m, in particular in the case where r — 1 = s is even,
for instance for r = 3,5 = 2. The use of the enriched V,}Ymr implies a smaller
matrix to be inverted on cach element than with the “brutal” choice V7 (11 x 11
instead of 17 x 17), but the latter may allow some simplification in writing the
program. [0

Remark 5.3: We have used, so far, homogeneous Dirichlet boundary conditions
corresponding to a clamped plate. Nothing changes when considering nonhomo-
geneous Dirichlet conditions. If, instead, a part of the plate is simply supported
(w = given; M,,,, = 0) or free (Mn, = 0; K, = 0), then we have two possi-
bilities for dealing with them. Let us discuss a simple case: let 92 =TpUTy
and assume that w = dw/On = 0 on I'p and M, = K, = 0onTpy. One
possibility is to choose ;" so that its elements vanish only on T'p, and to
let Vi7* unchanged. In this case the conditions M, = K, = 0 on 'y will be
satisfied only in a weak sense. A second possibility is to choase V™ in such a
way that its elements satisfy, a priori, the boundary conditions My, = K, =0
on I'y. However, care must be taken in this case to enrich conveniently the
stress field in the boundary elements, so that the inf-sup condition still holds.
Otherwise, a loss in the order of convergence is likely to occur.

Remark 5.4: One may think of using discretizations of the dual hybrid for-
mulations other than the oncs discussed here (see, for instance, the previous
remarks). In any case, the inf-sup condition should be checked. Although this
is not evident from our discussion (because we wanted to deal with many cases
at the same time), nevertheless it is true that to check the inf-sup condition in
hybrid methods is basically an easy task. What is really needed is the following:
for any element K, the only displacement modes with zero energy on K, that
is, the only modes ¢ such that

/ (Man(D)éfn ~ Kn(m)8) ds =0, Vze Wi,
8K

must be the rigid modes (that is, grad¢ = constant on K'). If this condition is
violated, one can expect troubles (minor or major, depending on the cases). [1

v

Complements on Mixed Methods for
Elliptic Problems

V.1 Numerical Solutions

V.1.1 Preliminaries

In this chapter we present some additional results on the application of the mixed
finite element method to linear elliptic problems. In particular in Section V.1
we shall discuss some aspects of the numerical techniques that can be used for
solving the linear system of equations that one obtains after discretization. The
procedure suggested here is essentially due (to our knowledge) to Fracijs de
Veubeke and, as we shall see, involves the introduction of suitable interelement
Lagrange multipliers A. Such a trick has the remarkable effect of reducing the
total number of unknowns and leads to solving a lincar system for a matrix
which is symmetric and positive definite instead of the original indefinite one.
A rough analysis of the computational effort that this procedure requires for
the various elements is presented in Section V,2. Moreover, as we shall see in
Section V.3 , the new unknown A’s that are obtained by such a procedure allow
Fhe construction of a new approximation u}, of u, depending on A and u,, which
is usually much closer to u. In a fourth section we sketch miscellaneous results
on error estimates in different norms. Section V.5 is dedicated to an example of
application to semiconductor devices simulation. Finally, Section V.6 presents,
on a very simple problem, some examples of dicretization that do not work, and
Section V.7 applications of augmented formulations introduced in Section 1.5.
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For the sake of simplicity we shall present the arguments on the model
case {cf. Chapter IV).

Au= finQ,
(L.1) u=gonlp,

—6—u~00n1‘

T N

although the range of generality is much wider. Similarly, we shall discuss in
detail the simplest case of the approximation by means of the KTy, = BDF M,
element and give statements and refercnces for the proofs of the other cases.

V.1.2 Interelement multipliers
As we have seen in Section IV.1, the mixed formulation of (1.1) is

12) (p,g) + (u,divg) = (g,¢-n),  Vge& Hon(div; ),
' (v,divg) =(f,v), Yv € L2(Q),

where u, f, and ¢ are the same as in (1.1) and p = grad u. Assume, for the sake
of simplicity, that Q is a polygon and let 75 be a triangulation of Q. We recall,
following Section 111.3.4, that the use of the RTy element for the approximation
of (1.2) consists of the following steps. We had

(1.3)  RTH(K) = {(a+bzi,c+ bxa), a, b, c € R} C (Pi(K))?,

(1.4) M’ = {q| ¢ € (L*()% 4| ,€ RTo(K), VK € Tu},

(1.5) M= N Hyn(div; Q) = {g € RTH(2,T1), ¢-n=0o0nTy}.

Thus, the elements of 0t are the elements of M° such that ¢ - n is continuous
across the interelement boundaries and vanishes on I'y. The discretized version
of (1.2) is now

1.6) {(2,,,51_,‘) +(un,divg,) = {g,g, -n), Vg, €M,

(Uh,diVBh):(f, vh), V’Uh E,Sg,

where, clearly, p, is sought in 9 and w in £3 . We remind the reader that

£9 is the space of piecewise constant functions. The linear system of equations
associated with (1.6) has the form (see (11.3.9))

@ G 5)(0)= ()
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and its matrix is indefinite. This is definitely a considerable source of trouble.
Therefore, following essentially the ideas of FRAEIJS de VEUBEKE [A] we
introduce the space

(1.8) A = L£)(&r)

of functions p, which are constant on each edge of the decomposition 7. For
any function x € L*(T'p) we consider

(A9 Axo={m i €A [(mn-x)ds=0, Vee£&unTy).

1t will finally be convenient to set, for q, € M® and ps € A,

(1.10) C(ﬂh,g,,) = Z/ #h g, -1 do.
K YVOK

The following lemma is a direct consequence of definition (1.5).

Lemma 1.1: Assume that ¢, € M, Then

(1.11) (c(n,g,) = 0, Vun € Aop) & (g, € ). O

Let now (Eh’ up) be the solution of (1.6), and consider the linear mapping
(1.12) ¢: Zh—"(Eh'ih)“"(u’“divgh)h”(g’gh'I’_%

where (x,¥)n = 3k [i x¥ dz. 1t is clear that #(g,) = 0 for all g, €M
Therefore, (1.11) implies that there exists a Ags € Ag p such that by Proposition
1L.1.2

(1.13) #(g,) = clhonrq,), Vg, eM°.

Let us show that such a Agy, is unique. This will be an immediate consequence
of the following lemma.

Lemma 1.2: If y; € Ay, p and
(1.14) c(un,g,) =0, Vg, €M,

then pp = 0.
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Proof: Let e* be an edge in £, and K* € 7;, be a triangle such that e* C 8K*.
Let ¢} € M° be such that

(1.15) Cle=0, VEK#K*

and defined on K* by

g, -1 =0 on the edges e # e*,
(1.16) h
25 1

-n=1one".

Then c(pa,q};) = [,. pn ds and (1.14) implies that s = 0 on e*. Since e*
was any edge in £y, this concludes the proof. O

Let us now define A, by means of
(1.17) M €Agp, An=ldonon&\lp.
Then (1.12) and (1.13) imply that
(1.18) (P, 9,) + (un, div g )n = c(dn,g,), Vg, €M’.O

We can summarize the results obtained so far in the next theorem.

Theorem 1.1: Let (p,,us) be the solution of (1.6) and let Ay be defined
through (1.13) and (1.17). Then the triple (p, , us, Aa) is the unique solution of

the following problem: find (p, , ua, As) in M? x £ x Ay p such that

(2,.4,) + (un,divg,)n = c(hng,), Vg, €M,
(1.19) (vh, div Eh)h = (f, vh)7 You, € 5:8,
C(uhlgh):ol Yun GAO’D.D

The matrix associated with (1.19) now has the form

A BC\ (P\ (G
(1.20) B o ol{ol=|FY{,
¢ 0o o) \A 0

and we still do not see any improvement on (1.7). However, consider that the
space 9M° is completely discontinuous from one element to another. This was
not the case with 91, which required the continuity of ¢, -n. As a consequence,
we can choose in 9P a basis, made of vectors q, that are different from zero
only on one triangle (as was the vector g; in (1.15) and (1.16)). Then matrix
A becomes block diagonal, each block being a 3 x 3 matrix corresponding to
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a single element and we can eliminate the unknown P at the element level by
solving

(1.21) P=A"YG - B'U - C'A).

We are left with the system

amy  (~BATB BATGN (U _(-BATG+F
' —-CA-'Bt —CA-\C? AT 0 ’

Recall now that £J is made of piecewise constants. This means that the ma-
trix BA~1B! is diagonal (in a more general case it will be block diagonal,
each block corresponding again to a single element). This means that we can
eliminate the unknown U at the element level by solving

(1.23) 0 = (BA™'B')1(-BA~'C'A + BA~'G - F).
We are finally left with a system of the form
(1.24) HA=R

with
H=CA" B(BA-'BY 1 BA-'Ct - CA-1C"
and S S
R=CA™'BY(BA~'B") '[BA!G - F).
It is clear that H is symmetric and positive definite. It is easy to see that the

procedure for getting from (1.20) to (1.24) is the most common procedure for
eliminating internal degrees of freedom, better known as static condensation.

Clearly, all that we have described so far applies to the various R7,
BDMy, and BDF M, elements described in Chapter III for the mixed approxi-
mation of elliptic problems, as well as to their corresponding elements for quadri-
laterals. More generally (and more philosophically) this procedure can be ap-
plied to systems of the form (1.7) whenever the matrix A corresponds to a bilin-
ear continuous form on a space V which does not have continuity requirements at
the vertices. See ARNOLD-BREZZI {A], BREZZI-DOUGLAS-MARINI [B],
BREZZI-DOUGLAS-FORTIN-MARINI {A], BREZZI-DOUGLAS-DURAN-
FORTIN [A] for the corresponding proofs in cases more general than the present

one. Other examples in which the procedure applies will be presented in Chapter
VIIL
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V.2 A Brief Analysis of the Computational Effort

As we have seen, the introduction of the interelement multiplier A, is in general
the most effective way of solving a discrete version of (1.2). This implies that a
comparison among different kinds of discretizations, as far as the computational
effort is concerned, must be done by the light of the “A—procedure.”In this
respect, two basic steps must be taken into account. The first step is the work
which has to be done at the element level: basically the hard part of this work
is the inversion of the matrix A (see (1.21)) and, if up, has many degrees of
freedom per element, also the inversion of BA-! Bt (see (1.23)). This, in our
example, was trivial, since A, on each element, was a 3 x 3 matrix and BA~1 3t
a 1 x 1 matrix (that is, a scalar). In more general cases those numbers can be
bigger. Therefore, it is always a good feature, for a space S approximating
H(div;2), to have a basis in which the two components are independently
assumed. Let us make it clearer with a simple example. If K is a triangle, a
reasonable choice for a basis in RTH(K) is

2.1 Bl = (1,0); 22 =(0,1); 23 = (z,y).

Now, since p® has two components which are both different from zero, the
corresponding local matrix

(2.2) Ak :/ PP de dy
= F
will have the structure
® 0 @
2.3) 0 ® @],
® ®

where ® means, a priori, a nonzero element. On the other hand, if K is a
rectangle, one will choose as local basis for RT[D](K)

(24) p'=(1,0); p*=(2,0); p°=(0,1); p*=(0,y).

Now each element of the basis (2.4) has one component identically zero, and
the corresponding matrix A%

(2.5) AK =

CoR
cCoR®
O oo
¥ oo

is block diagonal. An elementary inspection on the spaces RTy, BDM; and
BDF M gives the following outcome:

for K = triangle, then BDMy(= (P;)?) gives rise to a block
2.6 diagonal elementary matrix AF whereas T and
g y (¥]
BDFM[,C] do not;
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@7 for K = re:’ctangle, then RTjy; and BDF My, give rise to block
diagonal elementary matrices whereas BD My, does not.

It must also be noted that the total dimension of AKX also comes into play.
For instance, for Kk = rectangle and k& = 2 then RT[;C] produces a matrix AKX
(24 x 24), which is block diagonal and each of the two blocks isa 12x 12 matrix,
whereas BDM[;C] produces a matrix AX which is 14 x 14 (actually made from
a(12x12) block-diagonal matrix with two 6 x 6 blocks, plus two full rows and

or;ge, so that the total cost is nothing. But in a general case the inversion of
A* on each K might be expensive.

As far as the matrix BA-1pt is concerned, usually one gets, on each
element, a full matrix so that the total dimension of it (that is, the number of
degrees of freedom for up in each K) is the only way of comparison.

Let us consider now the second step which is the solution of the final
system (1.24) in the unknown An. It is easy to observe that the total number

Tables 2.1 to 2.4 summarize the computational effort for the various ele-
ments.

We have used, for the comparison, BDFM;:.H rather than BDFM,
because, as we shall see in the next section, the order of convergence of
BDFM,H_] is essentially the same as BDM, or RT;.

It must also be pointed out that the splitting of the vector Space into two
(or three) independent components is a crucial starting point for the use of ADT
solvers. See for instance DOUGLAS-—DURAN—PIETRA [A,B], DOUGLAS-
PIETRA [A], BREZZI—DOUGLAS—FORTIN~MARINI [A], and BREZZI-
DOUGLAS—DURAN—FORTIN [A].
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V.3 Error Analysis for the Multiplier

Let us consider again, for the sake of simplicity, the approximation of (1.2)
by means of the discretization (1.6). We assume from now on that Iy = @
and g = 0 in the notation of Section IV.1. This, if Q is for instance a convex
polygon, will ensure at least H2-regularity. We have seen in Chapter IV that

(3.1 lu — unllo +llp ~ p, acdiviay < ch (llullz + [1F11)-

Now if we are going to solve (1.6) through the introduction of the interelement
multiplier Ay, we compute the Ay unknown first, from (1.24), and then ux and
p, out of it (this is done element by element). However, we still have computed
A (which physically must be an approximation of «) and we seek some further
use of it. In order to do that, we first need an estimate which is somehow
better than (3.1) and was proved first by DOUGLAS-ROBERTS [A]. If u) is
the L%-projection of u onto £3, then

(3.2) llan — uallo < ch? ({lullz + [1F110)-

Estimates of this kind can be obtained from the abstract duality results of Chapter
IL. However, we found it more convenient to sketch a direct proof. To do so,
let ¢ € H2(Q) N HL(Q) be the solution of A¢ = @y — up. Clearly we have

(3.3) fléllz < ¢ llan — uallo-

Set now z = grad ¢ and let I,z be the interpolate of z in R7y. Recall that
(div (TTpz — z),v4) = 0, Vo, € £ (see Section 111.3.4), so that, in particular,
div ITp2z = @5 — ug. Then we have

liin ~ unlly = (div Hpz, iin — un) = (div Mpz, v — up)
= (Eh - p,11s2)
(3.4 =(p, —pnz—2)+(p, ~p.2)
=(p, —p,Maz — 2) + (p, — p,grad¢)
=(p, —p.Mhz ~ z) + (div (p, — p), 4).

Remember that (div (p, —p),va) = 0, Vo, € £3. Hence, if ¢» = L-projection
of ¢ onto £3, then (3.4) yields

(3.5 Nan —walli = (p, — p,Maz — 2) + (div(p, — p), 6 — é»)-
Since
(3.6) llz — Mazllo + |é — éallo < ch ||@]l2,

(3.2) follows from (3.1), (3.3), (3.5), and (3.6). 00
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We are now ready to get some extra information from . First, if (p, u)

is the solution of (1.2) and g, € MY, then by Green’s formula on each K we
have a

3.7 (g,gh)+(divgh,u)h:2/ ug, -nds=c(ug,).
K 7oK - N

From (3.7) and the first equation of (1.19) one gets
38 (p-p,.q,) +(div 4, 8 = up)n = c(u — An,q,), Vg, € me,

where we were allowed to use %, instead of u since div q, is constant in

each element. Let us define v}, and i, to be the interpolate in Si'N ¢ (Section
H1.2.31) of A, and u, respectively, by means of

(3.9 /(u;‘, —~ M) ds = /(ﬂh —u)ds =0, Ve € &,.

Equation (3.8) implies
S ' e . _
(3.10) ; 3K(Uh uh) g 2= Png,) (Aiv g, tin = wn)a,
Vg, € omo.

On the other hand, we have by Green’s formula

/aK(ﬁh —up) g, nds =/ grad(up—uy) - ¢, de

(3.11) K
+/ (p — uj) div q, dr.

K 4

A simple scaling argument shows that, for any @, € £VC and for any K in 7T,

(3.12) fonllox <ec  sup Jx ggdlvh 9y 42+ fi Bn divg, do
¢, ERTo(K) R llg,llox + lldiv g, llo.x

so that from (3.12), (3.11), and (3.10) we have

G13) Man - uillox < c [hx lip—pyllox + lin = unllox], YK €7,
which together with (3.1) and (3.2) gives

(3.14) llin = uillo < ch? (Jluflz + {Ifllr)-

Since [lu — dinflo < ch? |jully we get by the triangle inequality that

(3-15) e = willo < ch® (llulle + 1£110).

We can now summarize the above results in a theorem.
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Theorem 3.1: Let (Bh’ un, Ay) be the solution of (1.19), let u be the solution
of (1.1), and let u}, be the £ interpolant of A, defined by (3.9). Then

(3.16) lhu — uillo < eh® (uflo + 1110

with ¢ independent of & and . 0

Remark 3.1: The proof that we have given of Theorem 3.1 is somehow “un-
conventiona.”The traditional proof (see for instance ARNOLD-BREZZI {A])
will, as an intermediate step, estimate first the distance of A, from the L*(Ex)
projection A of u onto A, defined by

/(u—:\)ds:D, Ve € &.
In particular, in our case one would get
3.1 (1A= Anlln,—1s2 < ch® (luflz + 1AL,
where
(.18) el 172 2= (el hnlz,) "

Then (3.15) would follow from (3.17) by extending Ap in the interior of each
K (in our case such an extension is u}). [

Results of type (3.17) hold in much more general cases. For instance one
has

(3.19) 1A= Aalla,~1/2 < ch*¥?

for RT, or RTjy ot BDF M1 or BDF My, whereas for BDM;, or
B DM one has

(3.20) A = Aalla—1/2 < ch*¥? (k2 2),
(321) A = Xplln—1j2 < ek (k=1).

In (3.19)—(3.21) A, is still the interelement multiplier, now in A = £3(&),
whereas ) is the L2?(&)-projection of u onto A. For the proofs we refer
to ARNOLD-BREZZI [A], BREZZI-DOUGLAS-MARINI [B], and BREZZI-
DOUGLAS-FORTIN-MARINI [A]. One has now to extend A in the interior
of each element in order to derive from (3.19)—(3.21) estimates of type (3.15).

This can be done in many ways. We shall indicate here one possible choice.
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For K = triangle and k even we can define u}, € Py, (K) simply by
setting

(3.22) / ()~ M) pr =0,  Wps € Paler), i=1,23

€

(3.23) /K(u; —un)prr dz =0,  VYpe_s € Peo(K), (k> 2)

It is easy to check that (3.22)and (3.23) determine u} € Piy1(K) in a unique
way. In order to show this, check first that the number of conditions in (3.22)
and (3.23) matches correctly the dimension of Py :

(k= Dk _ (k+2)(k+3)
2 - 2 )

Then it is enough to show that if A3, = 0 and v, = 0, formulas (3.22) and
(3.23) yield uy = 0. First note that (3.22) (for A, = 0) implies that uy, on
each e,, coincides with £; (e, ), the Legendre polynomial of degree k + 1, up
to a scaling factor. The continuity of u} at the corners and the fact that for
k+1 odd, £y is antisymmetric will then give u}|sx = 0. Hence, for k > 2,
this means uj, = bsp;_5 for some px_2 € Py_,(K) and where by is the cubic
bubble on K. Condition (3 23) will now give easily up = 0.

(3.24) 3(k + 1) +

Let us go now to the case X = triangle and k odd. Here the construction
(3.22) and (3.23) does not work anymore. We shall indicate another choice
that works. Other possible choices can be found in ARNOLD-BREZZI [A],
BREZZI-DOUGLAS-MARINI [B]. Let us define, for k£ odd > 1, G4z as the
polynomial € Py such that ¢, = 0 at the vertices of X and

d
(325) Q;ct+2 Ie, = £k+1(61)y 1= 1, 2,37

(3.26) / P2 pr-1dz =0,
K

Vpe_1 € Peoy(K).

Note that. in (3.25), §/0t is the counterclockwise tangential derivative and
Lit1(e.) is the Legendre polynomial of degree & + 1 taking the value 1 at
the endpoints. We also define .41 € Pry1(K) by

(3.27) Y41 = a¢;t+2 on 0K,

(3.28) /K Yka1 Pr—2dz =0,  Vpu_g € Pe_o(K), k> 3.

Note that from (3.25)3.27), ¥i41le, = Let1(es) (6 = 1,2,3). Now we can set

(3.29) Set1 = Pegr @ {dra2}




]
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Our extension u} will be defined as the unique (we have to prove that!) element
of Sk41 such that

(3.30) / (up, — An) prds = 0, Vpr € Peles) (1 =1,2,3),

€y

(3.31) / (u;; - u;,) pk_gdﬂ = O, Vpk—2 S Pk_z(li'), k 2 3,
K

(3.32) / (up — up) Dbpprde = 0.
K

Note that the dimensional count (3.24), being independent of the parity of k, still
holds since both sides are increased by one. Assume therefore that Ay = up = 0
and let us show that (3.30)~(3.32) imply u}, = 0. For this, first note that for
every ppi1 € Pry1(K) we have

el 0
(3.33) / Pk+1 Vit ds = —/ —zlk—tl-!ﬁkﬁds = 0.

On the contrary,

-39 / ¢’~+za¢k+l - ‘v/‘aK(’d)k'f*l)zds #0.

Hence (3.30), (with Ay = 0) will first give u}, € Peg1(K) (by taking pxle, =
OiPyy1 /8¢, and summing over i); then again (3.30) will imply that

(3.35) uh = o Yrp1 + bkpy = @ Prga + 03 g2

(where 6541 is a bubble of degree k + 1 and b3 is the cubic bubble) for some
o € IR and some qx_2 € Pi_2(K). Now using (3.35), (3.28), and (3.31) with
up = 0 we easily get gy, = 0. Finally, (3.32) gives a = 0.0

A different approach for reconstructing an approximation v}, € Pi41(K) of
u which converges to u faster than us can be found for instance in STENBERG
(C]. Basically onc solves, in every K, a Neumann problem with p, - 7 as
boundary data by using u}, in order to fix the mean value in each element.
Another approach (BRAMBLE-XU [A]) consists instead of taking up and pa
as the first and second terms of a suitable Taylor expansion. Note, however,
that these methods will produce a completely discontinuous u}, whereas the
previous one was simply nonconforming.
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Remark 3.2: Let us go back to the simplest case of the lowest-order element
RTy = BDFM;. It has been proved by MARINI [C] that if we consider the

space £'7C and define ul € £1'VC 1o be the solution of
(3.36) Z/ grad v, - gradvy, de :/ fondz, Yo, € £V€,
T JT a

then, for f piecewice constant, one can compute, a posteriori, the solution
(p,,»un) of (1.6) through the formulas

631 pEk=miite-z) g . VKeT,
K
1
3.3 R * h? KeT
(3.38) mp Iarea([m/Ku,, o +0(hY), VK €T,

where zg is the barycenter of K. Formulas (3.37) and (3.38) (in particular
(3.37)) are specially interesting because the principle of (3.36), and therefore
its implementation and use, is much simpler that the principle of (1.6). On the
other hand, experimental results show that in some applications the accuracy of
(1.6), as far as p, is concerned, is superior to the accuracy of the traditional
methods (see, e.g., MARINI-SAVINI [A]) and that the correction (3.37) away
from ry (say, at 0XK) has a relevant improving effect on the accuracy. O

V.4  Error Estimates in Other Norms

We have seen in Chapter IV that all the families of mixed finite element methods
for the Laplace operator (and hence for more general elliptic problems) satisfy
the inf-sup condition and therefore provide optimal error estimates in the “nat-
ural norms,”which are the I{(dxv ) norm for p — p, and the L*(Q2)-norm for
u — uy. We have also seen in this chapter that if one introduces Lagrange mul-
tipliers Ay, in order to solve (1.6) (and in general one does want to do so), then
it is possible to obtain some additional information that allows one to construct
a new approximation uj of u that provides some extra accuracy for u in the
H*(Q)-norm. In this section we will present some other error estimates for
p—p,, ©—u and u — up in other norms which might be interesting for
applications. In particular, we shall deal with L®-norms and I ~*({2)-norms.
The interest of using L°-norms (especialy for p — p,) is quite obvious in the
applications: a large stress field in a very small region can have a small L2-
norm but will be very dangerous for safety reasons. The interest of having dual
estimates, like the estimates in H~*(£2) (s > 0), can only be understeod as a
prerequisite to the use of a “smoothing post-processor” (see, e.g., BRAMBLE-
SCHATZ [A,B]). We shall not present here such smoothing post-processors;
however ,we can describe their features: if you have a continuous solution (say
u) and an approximate solution (say u;) such that w—uy is small (say O(h*¥¥))
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in some dual norm || - [|_, , then you can operate some “local” and relatively

simple averages on uy, in order to produce a new approximation uj such that
fu —wujllo = O(h*+*). We refer to BRAMBLE-SCHATZ [A,B] for a more

precise information.

Let us now list the error estimates which have been proved so far in the
L*-norms. We shall only quote the more recent ones (and more accurate)
obtained by GASTALDI-NOCHETTO [A,B]. Previous results where obtained
by JOHNSON-THOMEE [A], DOUGLAS—-ROBERTS [A,B], and SCHOLZ

[B,D,E].
Let us see, for instance, the spaces RT}. or RT[k]. Then one has

(4.1) lu—unlloe + [lp=p, llL= < ch¥+t,

Note that, for k = 0, (4.1) holds only if f is smooth enough inside each element.
Moreover, for k > 0, the assumption u € Wk+222(Q) is obviously required.
We also have a superconvergence result for up — Ppu (here Pyu = L¥(Q)-
projection of u onto £9):

4.2) 1Pt — un(lpoe < ch**2 [log h|,

where again u is assumed in W +220(Q) and some extra regularity for f is
needed for k& = 0. Finally, for the case of rectangular elements one gets, for

k>0,
@3) [u(8) = un(S)] < h**? [log hf? (If]le.co0 + B0 [If]la1)

at the Gauss-Legendre points S of cach element. It is also possible to study the
error « — uy. One has, for £ > 0,

(4.4) lle = willeee < k™2 Jlog A% (1| f 1k 00 + i 0| fll 201,
and, for u € W*+2° (and for smoother f if k = 0)
(4.5) It ~ ujllLe < ch*+2 |log h).

Similar results hold for BDM and BDFM spaces and for their analogues in
three dimensions. [0

As far as the dual norms are concerned we have for RT, and RT[H or
BDF My and BDFM[,CH] elements, in two and three variables

(@6) flu—unll-s+llp=p, |-« +lldiv(p—p,)ll-s < ch**++1 0 <5 < k1,

whereas for BD M, or BDM[,C] elements, in two or three variables, one has

(47) ”u - uh”—ﬂ + ”d'V(B‘E,,)”—s < Ch‘:+s’ 0 <s < k!
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and
(48) B =p,ll-o S ert++1 ooy oy

For more precise estimates involvin ici i

g explicitly the regularity of the solution
we refer to DOUGLAS-ROBERTS [B], BREZZI—DOUGLAS—MARINI [B]
BREZZI—DOUGLAS—FORTIN—MARINI [A], BREZZI—DOUGLAS—DURAN-’

FORTIN [A]. Interior estimates can be found for | i
MICNER o) nd tor instance in DOUGLAS—

V.5 AEplication to an Equation Arising from Semiconductor
eory

\;Ve now consu.ier a special case of application of mixed finjte element methods
that is interesting in the simulation of semiconductor devices. Let us assume
that we have to solve an equation of the type

(5.1) div(e grad u + y - grad ) = f in Q,

ta.nd assume, for the sake of simplicity, that we have Dirichlet boundary condj-
ions

Note3 .however, that, in practice, we wil] always have a Neumann boundary
condition ¢ grad u.+goggd ¥ = 0 on a part of 30, In (5.1) we may assume 1)
tp be kno.wn, and in the computations we shall also assume that ¢ is piecewise

and small. In order to present the mixed ex i i imati
ponential fitting approximation of
(5.1) and (5.2) (BREZZI-MARINI PIETRA [A,B i
] a 3 7C ’
Stotboom o [ D, we first introduce the
(5.3) p=e ¥y
with its boundary valye

(5.4) X =evie,,

In order to simplify the notation we shall often write

(5.5) ¢ =1/e.

Using unknown #, problem (5.1) and (5.2) becomes

5.:6) e div(e™®grad p) = f in Q,
P = x on 9%,




e
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Note that the quantity

(5.7 p=ce ?gradp=cgradu+u-grad ¥

(which has the physical meaning of the electric current J through the device),
is the most relevant unknown of the problem.

We now apply a mixed method to the solution of (5.6). By choosing
the lowest-order Raviart-Thomas method, formulation (1.19) becomes: find
(p, pr, An) €O % £9 x A such that

(e e®p,,q,) + (o, div g, )n = c(On,q,), Vg, €M,
(58) (Uhvdiv Eh)h = (fy Jh)v Vgh S ’Sg)
c(ph,gh) =0, Yun € Ag,

where (-, -)» and ¢(g, g, ) are defined as in (1.19). By static condensation, (5.8)
can be reduced as in (1.24) to the form

(5.9) HA=R,

with [ symmetric and positive definite. We also point out that  will be an
M -matrix (see for instance VARGA [A]) provided that the triangulation is of
a weakly acute type. However, the scheme (5.8) (and the unknown p) are not
suitable for actual computations. Indeed, one can see from (5.3) and (5.4) that
p can become very large or very small in different parts of the domain €2 when
¢ is very small. Hence, we go back to the variable u. Since, as we have seen,
Ap in (5.8) will be an approximation of p at the interelement boundaries, we
can use the inverse transformation of (5.3) in the form

(5.10) up = ¥ Ay

where ¢, € £3(&€4) is defined as
(5.11) / e¥rds = / e ds, Ve, € En.

Problem (5.8) now becomes' find (p,, pn, ua) € M° x £ x Ay such that

(€7 'e®p,,q,) + (pn,div g, )n = c(e " un,g,), Vg, €M,
(512) < (on,div p,)a = (f,04), Yo, € £],

e(pn,p,) =0,  Vp€ho
The static condensation procedure applied to (5.12) now produces a system in
the sole unknown u, of the form

(5.13) Huy = R,
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where the unknown, the coefficients, and the right-hand side have a reasonable
size. Moreover, it is easy to check that the passage from H to H involves only
the multiplication of each row by a factor of the type e~**, which does not
alter the M -character of the matrix. Hence, if the decomposition is of weakly
acute type, H will be an M -matrix.

The most relevant feature of this approach is, however, that the approxi-
mation p, of the current obtained by (5.12) will now have continuous normal
compounents at the interelement boundaries. We have, therefore, a strong con-
servation of the current.

Remark 5.1: Problem (5.6) could also be discretized by dual hybrid methods.
However, in this case the conservation of the current will hold only in a weak
sense (BREZZI-MARINI-PIETRA [B]). O

Remark 5.2: It is easy to check that the one-dimensional version of this ap-
proach reproduces the celebrated Sharfetter-Gummel method, also known as
exponential fitting method. The use and the analysis of nonstandard formula-
tions (involving the harmonic average of the coefficients) in one dimension can
be found in BABUSKA~OSBORN [A]. O

Remark 5.3: It can be checked that, for very small ¢, the scheme (5.13) pro-

duces an up-wind discretization of (5.1). See BREZZI-MARINI-PIETRA [C]
for this kind of analysis. [

Remark 54. If (5.1) contains a zero-order term
div(e grad u + u - grad ¥) + cu = f,

then, in general, the matrix i in (5.9) will not be an M-matrix any longer, and
the same will be true for the matrix H in (5.13). To circumvent this difficulty,
one can change the choice of the space IM°. We refer to MARINI-PIETRA [A]
for a general theory of nonconforming mixed methods and to MARINI-PIETRA
[B] for applications to semiconductor devices. O

V.6 How Things Can Go Wrong.

We considered so far in this chapter and in Chapter 1V many examples
of mixed finite element methods that can be used for linear elleptic problems.
They are based on elements for the approximation of H(-+ . ) presented in
Chapter Iil. As it is normal, we only restricted our attention to the cases that
work. This, together with the simplicity of the proofs, might lead the reader
to think that we are dealing with a particularly easy, albeit trivial, case. The
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following example shows that mixed methods for linear elliptic problems are,
in a sense, very delicate, and that one has to handle them with care. Let us
consider, to illustrate this assertion, the model problem

uw =1 in I=]-1,1],
6.1 {

u(~1) = u(l) = 0.

o 1.2
It is clear that the cxact solution of (6.1) is given by u(z) = 3(z* - 1). By
setting, as usual,

o= ( =z in our case),
(6.2) {

L=HY(I), V=1r),

we may write the mixed formulation of (6.1) as: find o € £ and u € V such
that

U,T)-f—(u,T'):O, Vreg
(6.3) {(

(0’,11):(1,1)), VveV.

Choosing two finite-dimensional subspaces T, C ¥ and V, C V, we have the
discrete formulation: find oh € Xy and up, € V, such that

{(Uh,rh)+(uh,r,’,):0 V1, € Ty

4 (@ho) = (Lon) Vo € Vi

It is very easy to check that, for a given uniform dccomg.)osit.ion of. I into subin-
tervals I, if we choose Xh = E} and V), = £8, that is, plccemse constants,
then (6.4) has a unique solution and op=o0. Moreox.ler, up Is first-order accurate
(and second order accurate at the midpoints of the intervals).

Let us analyze this situation in the abstract framework of Chapter I1. We
have here

a(o,T) :/ardm,
1

(6.5)
b(v,7) = /vr'dz.

1
The eperator Br is here simply dr/dz. It is evidently surje.ctive (hence the
inf-sup condition) from H'(I) onto L*(I) and its kernel consists of constants.
The bilinear form af(-, ) is then cocrcive on the kernel of I3, as needed, but not
on H(I).

Now with the discretization introduced above, we have exactly for the
discrete operator By

(6.6) Ker By = Ker BNT,  Ker B.

This highly desirable inclusion of kernels makes a(, -) coercive on Ker B. The
inf~sup condition can also be checked directly: for v, Vi (piecewise constant)
one obviously can build 7, ¢ X such that dfy /dr = vp. Hence

(6.7 sup LT ik s 2 > ko]
Al 17all1 174]]

Now a naive idea, which is indeed correct in standard finite element for-
mulations, is that using a richer approximation should yield better results. This
would be true if one increased simultaneously the degrees of polynomials in
both T, and V, €.g moving to ¥, = Ll = £9. However, increasing ¥,
or Vj alone may lead to Strange results,

It is not surprising that we cannot increase the Space Vi too much without
disatrous effects op the inf-sup condition, For example, taking ¥ = £! and
Vi = 20 changes the matrix associated to By, tg 4 9N X N + 1 matrix which is
still of rank N, (The additional components o, of V, satisfy [, oy Thdz =0,

Hence, we have only created here a nonzero kernel for By, introducing
Spurious zero energy modes in the solution, Doing so we make the matrix of

the system singular. We shal] come back in Chapter VI (o this question of
Spurious modes,

Let us see what happens if instead We increase I, by taking T, =
£3 but keeping 1, — £9.

This can be seen as adding to the previous approximation quadratic bubble

function bi(z) in each subinterval 7. An ¢asy computation now shows that
one has

(6.8) on(z) = o —Zgﬁ)’k\lﬁ“gbk(r)
r 0

and that the error

(6.9) -0y = Z (2,61 bk)bk(a‘)
k 0

£0¢s to zero. The reason for this is that, in this case, we lost the inclusion

Ker B, ¢ Ker B and the constant ol appearing in (11.2.8) is now given by

(610) al = /L2 }12 + 10 ’
h
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as one can see with a simple computation on the b;’s.

One, therefore, sees that we must keep a delicate balance between coer-
civeness on the kernel of B and the inf-sup condition which are in a sense
conflicting conditions with respect to the choice of spaces.

Finally, let us give a last look at the solution (6.8). An equivalent form of
problem (6.4) is the constrained minimization problem

6.11 inf l/ 2dz,

@1 AT

6.12) /v;,r{, dz = /11;;, dz, Y € £5.
1 I

But the bubbles b (z) are transparent with respect to (6.12) so that they are free
to decrease the L2-norm of 7y, in any way. Indeed, the norm of r in (6.8) is
smaller than the L2-norm of the exact solution ¢ = z, and using a richer space
spoils the solution instead of making it better.

V.7 Augmented Formulations (Galerkin Least Squares
Methods)

We have seen in the previous section the importance of both conditions of the
general theory of Chapter 11, namely, the coerciveness on the kernel and the
inf-sup condition. We shall now apply the ideas of Section 1.5 to bypass one
ore both of these conditions. The methods presented should be seen as modeling
more complex situations and not as having a practical importance by themselves.
We already considered a similar idea in Section IV.3 when studying elasticity
problems.

Let us first consider the simplest modification, enabling us to obtain co-
erciveness on the whole space and not only on the kernel. We shall use the
augmented formulation (1.5.2) for which we write the optimality conditions:

/B-gdm + /udivq dz + ﬂ/(divp+f)diquz =0, VgeH({div;Q),
a Q - Q - -

(7.1)
/ divgvdw-}—/ fvdz =0, Vv € L*(Q).
a Q

The bilinear form a(p, g) is now defined by

(7.2) a{p,q) = / g-gdz + ﬂ/ divpdivgdz
Q- o -7

and we obviously have, for any 4 > 0 with ¥ = min(1, 3)

(7.3) a(p,p) > 7 llpll a(divi)-
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Hence for the discretization of (7.1), we only have to worry about the inf-sup
condition.

It is now obvious that, for instance, in Section V.6 we could now choose a
quadratic approximation for p, and a constant approximation for u, without any
problem,

Similarly, in more general two-dimensional cases, if we were interested in
employing a continuous approximation for p, we might choose, for instance,
the MINI element introduced for the Stokes problem or the elasticity problems
in Chapter IV or any other of the elements well suited for the Stokes problem
which we shall study in Chapter VI.

If we now want to avoid as well the problem of the inf-sup condition, we
can use formulation (1.5.3) for which the optimality condition can be written as

/1_3~gd:c+/ udivgdaz—{-ﬂ/ (divp+ f)divg de
Q 0 o 7 -

(7.4)
- 0/(3—&@ u)-¢ =0, Vg€ H(div;Q),
o k4 4
a/(g;_gdu—-p)-g{_gdvdz'—/vdiv_gdz
(1.5) o o

—-/fvd:s:O Yv € HE(Q).
Q

It is easy to check that we now have a problem of the form (I1.1.36)

76) {a(g,g) + b(u,_q_) = {F, 2)7 Vg € H{(div; Q)
b(v,p) — c(u,v) = (G,v), VveE Hg(Q).
where,
7.7 a(p,g) = (1 - a)/ﬂg-gdav + ﬂ/ﬂ divpdiv ¢ dz,
(7.8) b(u,¢) = (1 — a)/ udiv g dz,
o)
7.9) c(u,v) = a/ grad u-grad v dz.
a

If we choose 0 < @ < 1 and § > 0, conditions (I1.1.37) and (I1.1.38) are
satisfied and stability and optimal error estimates follow.

Remark 7.1: It is obviously also possible to use the variational formulation
(5.11) instead of (5.6) and to obtain convergence for every a > 0 and 8 > 0.0

We have rapidly presented here the basic idea of using augmented formu-
lations. We refer for more details to BREZZI-FORTIN~MARINTI [A].




VI

Incompressible Materials and Flow
Problems

Although the approximation of incompressible flows by finite element methods
has grown quite independently of the main stream of mixed and hybrid methods,
it was soon recognized that a precise analysis requires the framework of mixed
methods. In many cases, one may apply dircctly the techniques and results
of Chapter II. In particular, the elements used are often standard elements or
simple variants of standard elements. The specificity of Stokes problem has,
however, led to the development of special techniques; we shall present some
of them that seem particularly interesting. Throughout this study the main
point will be to make a clever choice of elements leading to the satisfaction
of the inf-sup condition. This chapter, after a summary of the problem, will
present examples of elements and techniques of proof. It will not be possible
to analyze fully all elements for which results are known; we shall try to group
them by families which can be treated by similar methods. These families
will be arbitrary and will overlap in many cases. Besides this presentation of
elements, we shall also consider solution techniques by penalty methods and
will develop the related problem of almost incompressible elastic materials. We
shall consider the equivalence of penalty methods and mixed methods and some
questions arising from it.

Finally, a section will be devoted to numerical considerations, in particular
to the construction of a divergence-free basis for the discrete problems.
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VI.1 Introduction

We hav§ already considered in Chapter I (Example 3.1) the Stokes problem
or creeping flow problem for an incompressible fluid. We had written it as a
system of variational equations,

Zu/é(_@):g(g)dr—/i-gd:c—/pdivydz:O, YveV,
(1.1) «Q Q 0

g divudz =0, Vg € Q,

Q

where V' = (H&.(Q))Z’ and @ = L*(€). In this formulation, u is the velocity of
the fluid and p its pressure. An analogue problem arises for the displacement
of an incompressible elastic material.

For an elastic material we have, following Chapter 1 (Example 2.2), to
solve the variational equation

(1.2) Q,u/g(g)'g(g)dz+/\/divgdivgdw:/f-vd:c, Yv e V.
o] [} o~ -

The case where A is large, (or, equivalently, when v = AJ2(A + u) ap-
proaches 1/2) can be considered as an approximation of (1.1) by a penalty
mcithod as in Section I1.4. The limiting case is exactly (1.1) up to the fact that
u is a displacement instead of a velocity. Problems where ) is large are quite
common and correspond to almost incompressible materials. Equation (1.2) can
be considered as a penalty approximation of (1.1). Results of Chapter II can be

applied and give conditions under which error estimates can be found that do
not depend on A,

It is also worth recalling that, defining

uy 1 8 /0u;  Buy
+ _— —_

1.3) Au = 0z} 20z, (3z2 + dzy ),
T, 10 ou o

82 ' 29z, \ Bz, 55)’

that is, Au = div g(u), we have 24 Au = y Au+p grad div u. Problems (1.1)
and (1.2) are then respectively equivalent to

—2pAutgradp = —p Au+ gradp = J,

(1.4 divu = 0,
ulr =0,
and
(1.5) —2pu Ay — Agraddivu = —p Dy~ (A4 p) grad divu = f.
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Remark 1.1: The problems described above are, of course, physically unrealis-
tic, as they involve body forces and homogeneous Dirichlet boundary conditions.
The aim of doing so is to avoid purely technical difficulties and implies no loss
of generality. The results obtained will be valid, unless otherwise stated, for all
acceptable boundary conditions.

To approximate the Stokes problem, two approaches follow quite naturally
from the preceding considerations. The first is to use system (1.1) and to dis-
cretize u and p by standard (or less standard) finite element spaces. The second
one is to use formulation (1.2) with A large as a penalty approximation to system

(1.1).
It rapidly became clear that both these approaches could yield strange re-

sults. In particular. the first often led to nonconvergence of pressure and the
second to a locking mechanism, the numerical solution being uniformly null.

For velocity—pressure approximations, empirical cures were found by HOOD
and TAYLOR [A], HUGHES-ALLIK [A] and others. At about the same time
some elements using discontinuous pressure fields were shown to work prop-
erly (FORTIN [B], CROUZEIX-RAVIART [A]) from the mathematical point
of view.

For the penalty method, the cure was found in selective or reduced inte-
gration procedures. This consisted in evaluating terms like fn div » div v dz
by quadrature formulas of low order. This sometimes led to good results.

It was finally stated (HUGHES-MALKUS [A]), even if the result was
implicit in earlier works (BERCOVIER [A]), that the analysis underlying the
two approaches must be the same. Penalty methods are equivalent to some
mixed methods. A penalty method works if and only if the associated mixed
method works (BERCOVIER [B]).

We now try to develop these results. We apologize from the beginning
for not treating every aspect of the problem that is still the object of a rapidly
growing literature.

V1.2 The Stokes Problem as a Mixed Problem

V1.2.1 Mixed formulation

We shall describe in this section how the Stokes problem (1.1) can be analyzed
in the general framework of Chapter II. Defining as above V = (H3(Q))?, Q =
L?*(Q), and

2.0 a(u,v) =2 /{;g(lﬁ) :Q(E) dz,

(2.2) by, q) = - / ¢ divy dz,
Q
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problem (1.1) can clearly be written in the form

2.3) {“(H’E) +o(n,p) = (f,v), VueV,
b(g, Q) =0, Yq € Q,

and is a saddie point problem in the sense of Chapter II. Indeed, we have already

seen that p is the Lagrange multiplier associated with the incompressibility
constraint.

In the notations of Chapter II, we can write

(2.4) B = —div: (Hy(Q))* — L*Q)
and
(2.5) B =grad: L}(Q) — (H~'(Q))%

I't is clear that the kernel Ker B' is one dimensional and consists of constant
functions. On the other hand, we have (e.g.., TEMAM [A))

(2.6) ImB:{ql/qda::O}.
e}

This is a closed subspace of L*(§2) and the operator B = —div possesses a

continuous lifting. Now choosing an approximation V;
; . » C V and
yields a discrete problem wea

Qufg(gh):g(yh)dx—/ph div v, dx:/f~vh dz, VYv, eV,
@7 Q Q 0" - B

/ gn div u, dz =0, Van € Qh.
2

As the bilinear form Ja&(uy) : £(vy) de is coercive on (H3(2))? there is no
problenﬁ as to the existence of a solution (uy, py) to problem (2.7). We thus try
to obtain estimates of the errors |ju ~ u,|| and llp - pallg-

We can ﬁrst see that the solution u, is not in general divergence-free.
Indeed the bilinear form b(w;,, gn) defines a discrete divergence operator,

(2.8) Bh = -divh B Vh - Qh.

(It is convenient here to identify @ = L*(Q) and Q4 C Q with their dual
spaces). In fact, we have

29 (@i wa,a)q = [ divae, g de,
O
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and, thus, divau, is the Lz-projection of div u,, on Q.

The discrete divergence operator coincides with the standard divergence
operator if div V, C Q). Refering to Chapter 1I, we see that obtaining error
estimates requires a careful study of the properties of the operator By, = —divy
and of its transpose that we denote by grad,.

The first question is to characterize the kernel Ker Bj, = Ker(grady). It is
clear from the definition of 6(v,, ¢4) that Ker(grad,) is at least one-dimensional
and always contains constants. It may, however, be more than one-dimensional
and we shall meet examples where this will occur. In these cases Im By, =
Im (divs) will be strictly smaller than Pg, (Im B); this may lead to pathologies
and may even imply trouble with the mere existence of the solution, as the
following example shows,

Example 2.1: Let us consider problem (1.4) with nonhomogeneous boundary
conditions, that is, with

(2.10) ur=r, /[-Q ds = 0.
r

It is classical to reduce this case to a problem with homogeneous boundary
conditions by first introducing any function % € (H'(2))? such that ii|p = r.
Setting u = ug + & with uy € (H1(2))? we then have to solve, with A defined
by (1.3)

@11) { — 2uAu, + grad p = f + 2uda = L

divuy, = —divi =g, uylr = 0.

We thus find a problem with a constraint Buy = g where ¢ # 0. We have
seen in Chapter II that the associated discrete problem may fail to have a
solution, because g, = Py, g does not necessarily belongs to Im B, when-
ever Ker B} (/ Ker B'. Discretizations where Ker(grad,) is more than one-
dimensional can therefore lead to ill-posed problems in particular for some
non-homogeneous boundary conditions. Examples of such conditions can be
found in GRESHO-GRIFFITHS-LEE-SANI [A]. In general, any method that
relies on extra compatibility conditions will sooner or later be a source of trouble
when applied to more complex (nonlinear, time-dependent, etc.) problems. O

We have given in Chapter II, Proposition 2.2, a criterion ensuring that
Ker By C Ker B'. We have seen that this is equivalent to the existence of an
operator I, from V to V), satisfying

(212)  b(u—Thy,qn) = /(divﬂ— divihn) gnde =0, Vou € Qn.
Q
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We can also write this as divy,(au) = Py, (div u). Building such an operator
will also be the key to verify the inf-sup condition, which is in the present case,

fn qn div v, dz
(2.13) mevs oy 2 Fallalieaaym, k> ko > 0,

where the constant k; is independent of A, Indeed, Proposition 11.2.8 tells us
that (2.13) will hold if the operator defined in (2.12) is continuous from V into
Vi, that is, if one has

(2.14) Maullv < c[lufly .

In most cases where II, can be explicitly built, (2.14) will also hold, thus
proving the inf-sup condition and the error estimate

lJe — u,lly + llp — pullo/m

(2.15) < inf .
el inf el 4 int o= anllon )
Usual-]y, we shall use quite standard elements to approximate % and p and it will
be quite classical to evaluate the right-hand side.

Remark 2.1: We shall also meet cases in which the constant kj, is not bounded
from below by k,. We shali then try to know precisely how it depends on /
and to see whether convergence to a lower order can still be expected. When

Ker(g@dh) is more than one dimensional, we are interested in a weaker form
of (2.13),

qn div vy, de
(2.16) sup fn\ >k inf ~
Uy EV) lloaliv = qEKelrr(lgEdh) lan q”Lzm))

and in the dependence of k, with respect to k. 0

Se‘veral methods have also been proposed to get a more direct and intuitive
evaluation of the quality of finite element approximations to divergence-free

functions. One of them is the constraint ratio, which we shall denote C, and
define by

2.17) Cr = (dimQy — 1)/ dim V.

N It is, therefore, the ratio of the number of linearly independent constraints
anising from the discrete divergence-free condition to the total number of degrees
of freedom of the discrete velocity.

' The value of C, has no direct interpretation, unless it is larger than 1, which
obviously means that, as the number of constraints exceeds that of variables,
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Example 3.1: P, — Po approximation

This is probably the simplest element one can imagine for the approximation
of an incompressible flow: one uses a standard P approximation for velocity
and a piecewise constant approximation for pressure. As the divergence of a
Py velocity field is piccewise constant, this would lead to a divergence-free
approximation. However, it is easy to see that such an element will not work
for a general mesh. Indeed consider a triangulation of a (simply connected)
domain § and let us denote

— t, the number of triangles,
— vy, the number of internal vertices,
-— vg, the number of boundary vertices.

We shall thus have 2v; degrees of freedom (d.of.) for space V; (as the
velocity must vanish on the boundary) and ¢ d.o.f. for pressure leading to (1 —1)
independent divergence-free constraints. By Euler’s relations, we have

(31) l=2v;+vg -2
and thus
3.2) t-1> 2(vr — 1).

A function u, € V, is thus overconstrained and a locking phenomenon will
occur: in general the only divergence-free discrete function is u, = 0. When
the mesh is built under certain restrictions, it is, however, possible that some
linear constraints become dependent: this will be the case for the cross-grid
macroelement (Figure VI.3) that will be analysed in section V1.5.2. 0

Flgure V1.3: The cross-grid element

Example 3.2: Rectangular approximations.

Let us consider a rectangular mesh with a @, approximation of velocity. Using
a Py pressure field would yield a divergence-free velocity field. It is, however,
easy to see that this approximation is strongly overconstrained. In the same way
it is not possible to build a divergence-free approximation from a Q2 velocity
field. O
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Example 3.3; Py — Py approximation,

Com'ing back to triangles and using a P, velocity field, a divergence-free ap-
proximation is obtained from a Py (discontinuous) pressure field. This can be
shown to work with a special cross-grid mesh (Section VL3.3). On a general
mesh there exist nontrivial divergence-free discrete velocity fields. They will

Figure V1.4

sho“'m in FORTIN [B] that building a general divergence-free triangular element
requires fourth-degree polynomials. This was afterwards analyzed in detail by

VOIGFiLIUS [A] and SCOTT and VOGELIUS [A]. We shall present this precise
result later,

. An obvious way to circumvent this problem is to weaken the discrete
dfvergence-free condition by using a smaller space Qy. Thus, the discrete
dfvergence operator divy = Pg, (div) will generate weaker constraints provided
div Vi ¢ Qn. For instance, using a piecewise constant pressure field with a P,

velocity field wil] be shown in Example 3.6 to yield a convergent and stable
approximation,

. Using continuous pressure fields is another way of weakening the discrete
filvergence-free condition even if this fact Was not the initial reason for their
Introduction. Before coming back to the analysis of some stable discontinuous
pressure methods, we shall consider some methods of this kind.
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the only discrete divergence-free function is zero. We then have a locking
Phenomenon.

Conversely a small value of C. implies a poor approximation of the
divergence-free condition. It must, however, be emphasized that such a use
of the constraint ratio has only a limited empirical value.

Another heuristic evaluation can be found by looking at the smallest rep-
resentable vortex for a given mesh. This will be closely related to building a
divergence-free basis (cf. Section VL.6). The idea behind (FORTIN [D]) is that
a discrete divergence-free function can be expressed as a sum of small vortices
that are, indeed, basis functions for Ker By. The size of the smallest vortices
can be thought of as the equivalent of the smallest representable wavelength in
spectral methods.

In this context, we shall refer to a regular mesh of n? rectangles, n? cubes
or 2n? triangles (Figure VI.1).

n? rectangles n® cubes
Figure VI.1

2n? triangles

We must also quote the results of ZIENKIEWICZ—QU—TAYLOR—NAKAZAWA
[A] who introduced a “patch test” to analyze similar problems. This patch test
is only heuristic and does not yield a proof of stability. Although it can provide
an intuitive indication, such a test may be misleading in several cases.

VL3 Examples of Elements for Incompressible Materials

This section will provide a survey of elements for incompressible materials.
This implies some classification of the known elements and such a classification
necessarily contains a large part of arbitrariness, We shall base our classifica-
tion on the techniques required for their analysis rather than on the elements
themselves. A major distinction also appears between continuous pressure and
discontinuous pressure elements. Variational formulation (1.1) contains no pres-
sure derivative so that no continuity is required for the approximation of this
variable. Users of finite element methods, however, feel better at ease with
continuous approximations; this “inertial” reason, along with the desire to com-
pute pressure at boundaries, has led people to approximate pressure by standard
continuous elements.
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iques enabling us to
we consider special techniques,
nts, permitting one to prove the inf-sup

use some initially pathological elements. Finally,
among them the use of macroeleme
condition.

We shall use the notations of Chapter III. I particular, (Py-Fy), (Qe-Pr)
and (Qx-Q,) will respectively mean clements in which velocitic
imated by polynomials of degree k and pressure by polynomial
or polynomials of degree k and ¢ in each variable. Special not

introduced for enriched versions of these elements and will be
needed.

S are approx-
s of degree ¢
ations will be
defined when

VL3.1 Simple examples

— use a standard element for vel

L S ocity and try to impose the divergence-free
condition everywhere,

— use the same standard element for both velocit

‘ Y and pressure (“Equal in-
terpolation methods”).

The first approach leads to
div(Vh) C Q4 and the second o

can be analyzed.

The most standard elements, represented sc

hematically on Figure V1.2, are
the Py, P,, Q, and &2 approximations,

a) Py b) P, c) @, d) Q,
Figure VI.2

We first deal with the fi
We first give a few exam
elements.

Ist approach: building true divergence-free elements,
ples showing that it js not possible with low order
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Example 3.4: Equal interpolation methods.

To fix ideas let us consider a very simple case, that is, a P; continuous interpo-
lation for both velocity and pressure. A simple count shows that if the number
of triangles is large enough, there exist nontrivial functions satisfying the dis-
crete divergence-free condition. Thus, no locking will occur and a solution can
be computed. Users of such methods (for instance (P, — P2), (Q1 — Q1)s
etc.) soon became aware that their results were strongly mesh dependent. In
particular, pressure exhibited a very strange instability. This comes from the
fact that for some meshes the kernel of the discrete gradient operator is more
than one dimensional and contains nonconstant functions. This means that the
solution obtained is determined only up to a given number of spurious pressure
modes, (GRESHO-GRIFFITHS-LEE-SANI [A]) and that, at best, some filter-
ing will have to be done before accurate results are available. We shall come
back later to this phenomenon also named checkerboarding after the behavior
of the (Q1 — Po) approximation of Example 3.8. To fully understand the nature
of spurious pressure modes, the reader may check the results of Figure VL5 in
which different symbols denote points where functions in Ker(grads) must have
equal values for a (P; — P;) approximation.

[—F

Lt O

Figure VL5

Apart from the constant pressure mode, we thus have in this case, three
spurious pressure modes. This also shows that there exists on this mesh one
nontrwvial discrete divergence-free function, whereas a direct count would predict
locking. 1

This unpredictable behavior of equal interpolation methods led to the intro-
duction of more sophisticated methods. In particular, HOOD~TAYLOR [A,B]
experimentally discovered that using an approximation for pressure one degree
lower than the approximation of velocity led to acceptable results. From this
emerged the methods of the following example.
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Example 3.5: Taylor and Hood elements.

From purely experimental considerations it was soon recognized that a (P, — P;)

or a {Q2 — Q1) approximation (Figure VI.6) yielded stable and convergent
results.

P, — P Q2 —Q

Figure VI.6

The analysis of these elements was first done by BERCOVIER-PIRON-
NEAU [A] and requires special techniques; it will be presented in Section VL6.
We shall see later how the above elements can be slightly modified to make
their analysis simpler (and incidentally making them more accurate). [

Example 3.6: (P, — P) and Crouzeix-Raviart elements.

Having realized that low-degree divergence-free elements could not be built (ex-
cept on special meshes and with a few difficulties), an obvious idea is to weaken
the constraint. Let us consider the case of 2 P, velocity field on triangles and

a (piecewise constant) Py pressure field. The discrete divergence-free condition
can then be written as

(3.3) / div u), d:c:/ uy -nds =0, VK € Ty,
K aK -

that is, as a conservation of mass on every element. This is intuitively an ap-
proximation of div u, = 0, directly related to the physical meaning of this
condition. It is, however, clear from error estimate (2.15) and standard approxi-
mation results (cf. Chapter III) that such an approximation will lead to the loss
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introducing the cure for this problem, that is, the Crouzeix—Raviart element, we
give a first glance at the analysis of the P, — Py element as this will be the
basis for most discontinuous pressure approximations. If one tries to check the
inf-sup condition by building an operator I, satisfying (2.12) one is led, u
being given, to build u, = IT,u such that

(3.4) / Giv(u—1,) gs dz =0,  Van € Qn
K

or, equivalently, as g, is constant on every element I € 7Ty,
(3.5) / div(y — u,) dz = / (x—uy) nds=0.
K oK

This last condition could be satisfied if u, were built in the following
way. Let us denote by M; and e;, i = 1,2,3, the vertices and the sides of the
triangular element K (Figure VI.7); mid-side nodes are denoted A;;. We then
define

(3.6)
G.7)

Figure V1.7

Condition (3.7) can be fulfilled by a correct choice of uy(M;;). Moreover, this
construction can be done at element level as the choice of u;,(M,-j) is compatible
on adjacent elements.

Although this is the basic idea, some technicalities must be introduced
before a real construction is obtained. Indeed, for u € (HJ(£2))?, condition
(3.6) has no sense. We shall use in Section V1.3.2 the same technique as in
Chapter IV to overcome this. We now turn our attention to the Crouzeix-
Raviart element, which is an enrichment of the previous one. If a piecewise
linear pressure is to be used, condition (3.5) must be changed to

-~ / -/ N 14 n w - D ITTY
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The previous construction (provided it is correctly justified) enables us to choose
uy, satisfying this for p;|x = constant. Moreover,this choice of u, depends only
on the values of u on 8K . The idea of Crouzeix and Raviart was to increase
the number of d.o.f. of the element by adding bubble functions (that is, shape
functions vanishing on 8K). Thus we use as a velocity field, a finite element
space such that

(3.9) ulk = p, +agdidds, p, € (P(K))?, ay € I,

where the A; are the barycentric coordinates of K. Writing now (3.8) in the
form

(3.10) / (v~ u,) gradpy de = (u~u,) np ds,

K 8K
it is possible to choose . to satisfy this equation. It must be noted that uy, - n,
in the right-hand side of (3.10) is already specified by (3.6) and (3.7). It is
now easy to sce that error estimate (2.15) will be optimal, that is, O(h?), with
respect to the clements used. As we shall see in the next sections, adding internal
nodes to stabilize elements and permit the use of higher-degree pressure fields is

a fundamental idea that will also prove useful for continuous pressure elements
shown in the next example. O

Example 3.7: Stable continuous pressure elements (MINI and related elements).

Let us come back to the (P, — Py) clement of Example 3.4. Following
ARNOLD-BREZZI-FORTIN [A], we add, as we have already seen in Chapter
1V, to the velocity field bubble functions

(B11) upli =p, + @A, VK €Ty, p, € (Pi(K))?, ay € IR%.

As the pressure field is continuous, integrating (3.4) by parts reduces to

(3.12) /gh - grad p; dr:/y-g@dm de, ¥p1 € £,
2 i)

as boundary terms cancel. But (3.12) will, a fortiori, be satisfied if one has

(3.13) / uy de :/ ude, VK.
K K

Indeed, gradp; is piecewise constant and (3.13) evidently implies (3.12). It
is easily seen that a proper choice of @y makes (3.13) hold and thus adding a
bubble function to a standard element again makes it stable. The same trick will
yield an enriched version of the Taylor-Hood element: adding bubbles enables
us to usc the technique sketched in (3.12) and (3.13). 0
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Remark 3.1: Let us denote by P} the space of P, polynomials enriched by
bubbles. We present in Figure VI.8 a diagram of the elements introduced above.

> P

a) Py — Py b Pt — P (Crouzeix-Raviart)

> D
> B

¢) Mini d) P2+ — Pj continuous
Figure VL8

The continuous pressure (P — P1) element can be considered as a sub-element
of the Crouzeix-Raviart element. The inf-sup condition for this element is a
direct consequence of the result for the Crouzeix-Raviart element. Both these
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practical interest of such a fact is somewhat limited.

Example 3.8: The Q1 — Py element.

Our previous examples of discontinuous pressure clements were built on trian-
gles. Quadrilaterals are also widely used and among quadrilateral elements, the
@1 — Py element (Figure VI.9 a)) is the first that comes to mind. It uses a
standard @, velocity field and a piecewise constant pressure field. This element

(FORTIN—PEYRET—TEMAM [A]). Tts first appearance in a finite element con-
text seems to be in HUGHES-ALLIK [A].

D x

a) (1 — Py element

[j "

b) Q2 — Py element

X X
X X

©) Q2 — Q1 element
® value of velocity

X value of pressure

X ~ Values of pressure and its first derivatives
Figure VL9

However simple it may look, the Q, — P, element is one of the hardest ele-
ments to analyze and many questions are sti]] open about its properties. This
element does not satisfy the inf-sup condition: it strongly depends on the
mesh.  For a regular mesh the kernel of the discrete gradient is two dimen-
sional. More precisely, grad, p, = 0 implies that p, is constant on the
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q G
G G G
Figure VL.10

This means that two singular values (cf. Chapter II) of the operator B), = divy
are null. Moreover, it was verified by computation (MALKUS [A]) that a
large number of nonzero singular values converge to zero when h become.s
small. JOHNSON-PITKARANTA[A] indeed proved that the constant kj is
O(h) and cannot be bounded from below (see also ODEN-JACQUOTTE [A]).
The Qy — P, element has been the subject of a vast literature. We shall sum-
marize some of the facts known about it in Section VI.5.4. [

Example 3.9: (Q; — P;) and (Q, — Q1) elements

The Q2 — P, element is probably the most popular quadrilateral two-dimensional
element at the present time. It was apparently discovered around a blackboard at
the Banff Conference on Finite Elements in Flow Problems (1979). This element
is sketched in Figure VI.9; 1t satisfies the inf-sup condition, the pro.of of this
being essentially the same as for the Crouzeix—Raviart element, besides some
technical details specific to quadrilaterals. This clement is a relatively late comer
in the field; the reason for this is that using Py pressure on a quadrilateral is not
a standard procedure. It appeared as a cure for the instability of the (Qg - Q1)
clement (also sketched in Figure VI 9) which appears quite natur.ally in the use
of reduced integration penalty methods (BERCOVIER [B]). This last element
is essentially related to the Q1 — Py element and suffers the sarfle p.roblem
although to a lesser extent. Another cure can be obtained by adding internal
nodes (FORTIN-FORTIN [A)]). O

Example 3.10: Non-conforming elements

Another classical way (CROUZEIX-RAVIART [A]) of obtaining elements sat-
isfying the inf-sup condition is to use a nonconforming velocnty'ﬁeld. The
simplest element of this kind is for sure the PYC — P, element of Figure VIL.11.
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+

PNC _ P, element
Figure VL11

Mid-side nodes enable to control the flux through the side and to build an
interpolation operator satisfying (2.12) or rather a nonconforming version of it.
Other nonconforming methods of odd degrees can be found in CROUZEIX-
RAVIART [A]. The second degree case has been treated in FORTIN-SOQULIE
[B]. It must also be said that coerciveness may be a problem for the PNC _ p,
element as it does not satisfy the discrete version of Korn‘s inequality, 00

Example 3.11; T hree-dimensional elements.

Many of the elements presented above have a three-dimensional counterpart. For
instance, the Crouzeix~Raviart element of Example 3.6 can casily be generalized
to the three-dimensional case: one needs bubble functions at the faces of a tetra-
hedron to enable control of the normal flow and internal bubbles to stabilize the
nonconstant part of pressure (Figure VIL.12a). This yields an element containing
fourth-degree shape functions. A nonconforming counterpart has been built in
FORTIN [E]. In this case shape functions remain in Py(K) and the degrees of
freedom associated with vertices can be deleted without loosing accuracy. (Fig-
ure VL12b). The @, — P, (Flgure VI.12¢) element has a direct extension and
has been used numerically (BERCOVIER—ENGELMAN—SANI—GRESHO [AD.
The Taylor-Hood P, — Py element has also been used (Figure VL.12d). Adding
to it a bubble function as in Example 3.7 makes its stability obvious. Numerical
evidence (BERTRAND-DHATT—FORTIN—OUELLET—SOULAIMANI [A]) in-
dicates that this also improves accuracy and could, therefore, be worthwhile to
use. The MINI element of Example 3.7 is also readily extended to tetrahedra
(Figure VL12e). It is probably the simplest stable three-dimensional element
along with the nonconfornming Py — Py element (Figure VI.12f) which has been
studied in HECHT [A] for instance. The most popular of three-dimensional
elements up to now is probably the Q; — P, element (Figure V1.12g). It suffers
from the same problems as its two-dimensional counterpart. We shall analyze
it in detail in Section VIS, Development of three-dimensional elements is still
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a) Crouzeix~-Raviart element

¢) (J2-P; element

Figure VL12

b) Non-conforming P2 — Py

d) Taylor-Hood
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~347

L

€) MINI element ) Non-conforming P, — Py

value of velocity

value of velocity at barycenter

X

value of pressure

[N

values of pressure and
its first derivatives

-

Mo

g Q1 — Py element

Figure VI.12: Three-dimensional elements

V1.4 Standard Techniques of Proof for the inf~sup Condition

We now consider in this section the proof of the inf-sup stability condition for

a large class of elements. In the present problem, the most general way to do
this is to build some interpolation operator Il satisfying

(A 1N /‘A:‘.(N L LY 1 n

A\ —_
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and
(4.2) Maullv < e lluflv,

where the V norm is the (H} (2))? norm. As it is shown in Chapter II, condition
(4.1) is equivalent to Ker(grads) C Ker(grad). An element with this property
will present no spurious pressure mode. We shall develop a technique to build
I, for a fairly general class of elements. We shall follow, the approach of
Proposition 11.2.9. We have, therefore, to build two operators II; € £(V,V,)
and II; € £(V, V4) satisfying

@3) IMslly < e Jfullv, Voev,

(4.4) [M2(7 ~ 1,)w]] < e, [lz]]v, Yv eV,

(4.5) / div( ~Tov) gy de =0, Vo€V, Ygu € On,
1

where the constants ¢; and ¢z must be independent of h. Then the operator IT,
satisfying (4.1) and (4.2) will be found as

(4.6) Maw = Mu+ My(u — 11, ).

In many cases, IT; will be the interpolation operator of CLEMENT [A] (cf.
Proposition I11.2.1) in #7'(2); we then have

(4.7) DohE T - <cllulfq r=0,1.
K

Setting r=1 in (4.7), and the triangle inequality [|Tlyolly < [lu—T1, 0|y + llz|lv
yield (4.3),

On the contrary, the choice of I, will vary from one case to the other,
according to the choice of Vj and Q. However, as we have already seen
in Chapter IV, the common feature of the various choices for II, will be the
following one: the operator Il5 is constructed on each element K in order to
satisfy (4.5). In many cases it will be such that

(4.8) IMaplls ke < e(hg'llellox + lu)1x).

It is clear that (4.8) and (4.7) imply (4.4) since
(4.9) Mo(7 = )i} o = S IMT(7 — I )|} «
K

< CZ{III_(Q”(I_ HI)Q”g,K +|(I - Hl)l’.lf,x} < C”E”inv
K

We can summarize this in the following proposition.
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Pr.oposition 4.1: Let V, be such that a “Clement’s operator”: II; : V —s Vi
exists and satisfies (4.7). If we can construct an operator I1, : V —, Vi such

We }}ave already seen in Chapter IV some cxamples of the above procedure.
Let us briefly recall the following example.

Example 4.1; The Py — Py element.

> > e A and ever v E
(3(’ (s 2)) ) II2—I' ,}( b) the Conditions

Mav|k € Po(K),
(4.10) Mool (M) =0,  YM = vertex of K,
/Hzg ds = /g ds, Ve = edge of K.

It is now elementary to check that N3, as defined in (4.10), sati
, -10), satisfies (4.5) and
(4.8). Actually (4.5) follows from @9

(4.1) / div(Tlyy — ) dx:/ (v —w)-nds =0
K oK T
and (4.8) follows by a scaling argument (see Section 1I.2.4)
1D Mavhie = Ton), z < e (k, 00)|, 1
<k, 90)(111_{1|210,K+|211,K)-

The above proof can easily be extended to more general cases. It can be applied
to the Q2 — P, quadrilateral clement provided the usual regularity assumptions

nodes (FORTIN M.[D], FORTIN, A. [A], BERNARDI-RAUGEL [A]). Indeed
if only the normal component of u, were used as a degree of freedom, the

side, the normal component of u, is quadratic, whereas the tangential is only

lin;ar. We now define 1T,y in P3(K) by asking (Maw)(M;) = 0 (1 =1,2,3)
an

413\ [\, A
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Figure VL13

The above proof applies directly. The same argument can be done for the
@2 — Py quadrilateral element.

For three-dimensional elements, one needs to correct some mid-face node
instead of a mid-side node in order to control the normal flow on the face. From
this point, the idea of the proof is the same. Finally, we shall present examples
in the next section in which a patch of elements (a macroelement) will have to
be used. A correction of u, at some cleverly chosen node on the boundary of
the patch will ensure that the inf-sup condition will hold for piecewise constant
pressure, O

In a certain number of situations, the operator Il that we have constructed
here for the P, — P, element will be used, when applying Proposition 11.2.9, as
an operator II;. We, therefore, change 1its name: we denote by ﬁl the operator
Wy constructed for the Py — Py element and we recall its properties

Mzl < clell, Yv eV,

(4.14) . - :
/ div(z — I v) dz = 0, YeeV, VK €T,
K

As an example in which this choice of I, is convenient, let us consider the
following example.

Example 4.2: The Crouzeix—Raviart element.

We already said that we shall choose II, = II, in applying Proposition 11.2.9 .
We now choose II,. Since Vj, is locally made by P, polynomials plus bubble
functions, we choose I, V — (B3)?. That means II,v in each K will be a
pair of P3-bubble functions (with coefficients to be chosen).

Actually we shall define Hyv only in the case when divy has zero mean
value in each K. This will be sufficient since we shall use in practice Il(1—1I,)
and II; satisfies the second equation of (4.14). For all K and for all v with

(4.15) / divydz =0,
K

we then set IT;v as the unique solution of

- - -- "
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@.17) /K 6w ~v) g dz =0, Vg, € Py(K).

Note that (4.16) and (4.17) is a linear system of three equations (dim P (K) = 3)
In two unknowns (dim(B3(K))? = 2) that is compatible since v is assumed to
satisfy (4.15) and, on the other hand, for every b € (B3(K))? we clearly have

/divgdx:O
K

We have only to prove that
(4.18) IM2lls ke < ellofl,x

forally e v satisfying (4.15). Indeed (4.17) can be rewritten as

(4.19) A(Hz_’q).gT_ﬂd gn dz = / div v (qn — qn) dz,
K

where gy, is any piecewise constant a imati i
_ . pproximation of gn. A scaling argum
as 1n Section II1.2.4 yields ® Hgument

(4.20) Wavly g < 12, g o(60)
which easily implies (4.18).0

'!"he.above proof applies quite directly, with minor changes due to the
technicalities special to quadrilaterals, to the Q2 — P, element. It can also be
used to create nonstandard elements. For instance, in FORTIN-FORTIN [A]
bubble fu-nctions were added to a Q) — P, element in order to use a Py pressure:
field. This element is not more, but not less, stable than the standard Q- P,
but gives better results in some cases. 1 ’

Before moving to general results, we recall the proof of the stability of

the MINI element (Example 3.7) of ARNOLD-BREZZI-FORTIN [A] already
presented in Section IV.2,

Example 4.3: Stability proof for the MINI element.

Here we use, again, the operator 1, of Clement as in Proposition 4.1, and we
have now to construct IT;. Since in each element we have v, € (P, (K))? 4

(Bg(:[())z, We can again build IT, . V — B3 and define it, on cach as the
solution of ’

Hgﬂl[{ € (33(]())2,
@.21)

. FI P | 1 ~ v - -
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It is clear that (4.21) has a unique solution and that (4.8) will hold by a simple

scaling argument On the other hand, taking advantage of the fact that now
Qn C HY(Q), we have

(4.22) / div(Ilyv — v) qn dz = — / (Iyv — v).grad g, dz
n Q

:Z/(Hw—y) grad g dz = 0,
K K

so that (4.5) is also satisfied and we can apply Proposition 4.1 to obtain the
inf-sup condition.

VI1.4.1 General results

This subsection will present a general framework containing the previous ex-
amples and providing a general tool for the analysis of finite element approx-
imations to incompressible materials problems. This technique will be further
extended in Section VI.5 to the case of composite elements, but for the sake of
comprehension it is worth considering first the simpler case.

The basic idea has been used several times on particular cases, starting from
CROUZEIX-RAVIART [A] for discontinuous pressures and from ARNOLD-
BREZZI-DOUGLAS {A], and ARNOLD-BREZZI-FORTIN [A] for continuous
pressures, We are going to present it in its final generat form given by BREZZI~
PITKARANTA [A]. It consists essentially in stabilizing an element by adding
suitable bubble functions to the velocity field.

In order to do that, we first associate to every finite element discretization
Qr C L*(Q) the space

(423) B(gradQs) = {8 € (H5(2)), Blx
= b3 i grad qu | for some g € Qn}.

In other words, the restriction of a § € D(gradQs) to an element K is the
product of the P; bubble functions bz g times the gradient of a function of

Qrlx.

Remark 4.1: Notice that the space B(grad J5) is not defined through a basic
space B on the reference element. This can be easily done, if one wants to, in
the case of affine elements for all the reasonable choices of Q5. However, this
is clearly unnecessary: if we know how to compute g» on K we also know
how to compute grad ¢, and there is no need for a reference element. [

We can now prove our basic results concerning the two cases of continuous
or discontinuous pressures.
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Proposition 4.2: (Stability of continuous pressure elements). Let the following
assumptions hold:

(4.24) there exists IT; € £(V, V3) satisfying (4.7)
(4.25) Qn C YD),
(4.26) Va D B(gradQ,) (defined as in (4.23)).

Then the pair (Vi,Qx) is a stable element, in the sense that it satisfies the
inf-sup condition.

Proof: We shall use Proposition 4.1. We already have our operator II; by
assumption (4.24). We only need to construct Il,. We define I -V -
B(grad Qa) on each element by requiring

M2v|k € B(grad Qn)x = bs x grad Qux,

4.27)
’/K(Hzg‘g)'gr_@dqh dz =0, VQhEQ}.[}(.

Problem (4.27) has obviously a unique solution. As in (4.22), it is clear that TI,

satisﬁes (4.5). Finally (4.8) follows by a scaling argument. Hence, Proposition
4.1 gives us the desired result. [

Corollary 4.1: Assume that Q@r C @ is any space of continuous piecewise

smooth functions. If Vi 3 (£})? @ B(grad @), then the pair (Va, Q) satisfies
the inf-sup condition.

Proof: Continuity and piecewise smoothness imply (4.25). The condition

(£1)? C Vi implies (4.24), and condition B(gradQn) C Vy is (4.25). Hence
we can apply Proposition 4.2. 0

The above results apply, for instance, to the enriched Taylor-Hood element
and, if one wants, to the families (ARNOLD-BREZZI-FORTIN [AD

Vi = (L4 ® Biy1)?,
Va = (L4 ® Bry2)?,

Qh:‘ci—lt
Qn = £

(4.28)

We turn now to the case of discontinuous pressure elemeante
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Proposition 4.3: (Stability of discontinuous pressure elements). Let the follow-
ing assumptions hold:

(4.29) there exists IT; € £(V, V3) satisfying (4.14),

(4.30) Vi D B(grad Qy), (defined in (4.23)).

Then the pair (Vi, Q1) is a stable element in the sense that it satisfies the inf-sup
condition.

Proof: We are going to proceed as in Example 4.2, that is, by essentially
applying Proposition 11.2.9. We take TI; (given by (4.29)) as opcrator II;. As
in Example 4.2, we arc not going to define II; on all V, but only in the subspace

(4.31) Vo= {v|veV, / divu de = 0, YK € Th}.
K

For every v € V° we construct Il,v € B(grad @) by requiring that, in each
element X,

Myvlk € Bgrad Qn )|k = b3,k grad Qulk,

(4.32) / div(llyu — v) g dz = 0, Yan € Qalx-
K

Note that (4.32) is uniquely solvable if v € V7, since the divergence of a bubble
function has always zero mean value (hence, the number of nontrivial equations
is equal to dim(@n|k) — 1, which is equal to the number of unknowns; the
nonsingularity then follows easily). It is obvious that I, as given by (4.32),
will satisfy (4.5) for all v € V°. We have to check that

(4.33) (Maufly < ellulls,

which actually follows by the same scaling argument as in (4.19) and(4.20). It
is then easy to see that the operator

(4.34) Iy = 10y — Ip(7 - 1y)
satisfies (4.1) and (4.2). Hence, the inf-sup condition follows from Proposition

11.2.8.0

Corollary 4.2: (Bidimensional case). Assume that Qn C Q is any space of
piecewise smooth functions. If V, D (£1)?®B(grad @4 ), then the pair (Vi, @n)
satisfies the inf-sup condition.

§VIL4 Mixed and Hybrid Finite Element Methods 227

Proof: Condition (£1)? C V; implies (4.29) as we have seen in Example 4.1.
On the other hand, the condition B{gradQx) C Vi is (4.30), so that we can
apply Proposition 4.3. 0

Proposition 4.1, 4.2, and 4.3 are worth a few comments. They show that
almost any element can be stabilized by using bubble functions. For a contin-
uous pressure element this procedure is mainly useful in the case of triangular
elements. For discontinuous pressure elements it is possible to fully stabilize el-
ements which are already partially stable,that is, stable for a piecewise constant
pressure field. Examples of such a procedure can be found in FORTIN-FORTIN
[A]. Stability with respect to piecewise constant pressure implies that at least
one degree of freedom on each side or face of the element is linked to the
normal component of velocity (FORTIN [D]).

VI1.4.2 Higher-order methods

In this subsection we shall recall the statement of a basic result by SCOTT-
VOGELIUS [A] which, roughly speaking, says: under minor assumptions on
the decomposition 7, (in triangles) the pair V;, = (£1)%, Qn = £3_, satisfies
the inf-sup condition for k > 4. This, in a sense, seftles the matter as far as
higher-order methods are concerned, and leaves only the problem of finding
stable lower-order approximations.

In order to state in a precise way the restrictions that have to be made on
the triangulation, we assume first that §2 is a polygon, and that its boundary
JQ2 has no double points. In other words there exists two continuous piecewise
linear maps =(t), y(t) from [0, 1] into IR such that

(:E(tl) = :lt(tz) and y(tl) = y(tg)) implies 11 =12,
0Q = {(z,y) |z = z(1), y = y(¢) for some ¢t € [0, 1]}.

Clearly we will have lim,—; z(¢) = z(0) and lim,_.; y(t) = y(0). Note that
we already restricted ourselves to a less general case than the one treated by
SCOTT-VOGELIUS [A]. We shall make further restrictions in what follows,
so that we are actually going to present a particular case of their results.

Let now V' be a vertex of a triangulation 75 of € and let 8,,...,6,, be
the angles, at V, of all the triangles meeting at V, ordered, for instance, in the
counterclockwise sense. If V' is an internal vertex, we also set 8,41 = #;.
Now we define S(V') by

(4.35) if n =1, then S(V) =0,

(4.36) ifn>1and V €0Q, then S(V)= max (7 —6; — 8;41),

i=ln-—-1

(A7 XY A B s TSN Y n n N
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It is easy to check that S(V') = 0 if and only if all the edges of 7, meeting
at V fall on two straight lines. In this case V is said to be singular (SCOTT-
VOGELIUS [A]). If S(V) is positive but very small, then V' will be “almost
singular”. Thus, S(V') measures how close V is to be singular.

We are now able to state the following result.

Proposition 4.4: (SCOTT-VOGELIUS [A]). Assume that there exists two pos-
itive constants ¢ and § such that

ch < hg, VK € Ty,

and

(4.38) S(V) > 8, YV vertex of 7.
Then the choice Vi, = (£4)*, Qn = £)_,, k < 4, satisfies the inf-sup condi-
tion with a constant depending on ¢ and 6 but not on h. [0

Condition (4.38) is worth a few comments. The trouble is that S(V)y=0
makes the linear constraints on w,, arising from the divergence-free condition,
linearly dependent. We shall meet other instances of this case in Examples
5.1 and 5.2. When this linear dependence appears, some part of the pressure
becomes unstable. In the present case, this unstable part could be filtered out
so that condition (4.38) could in reality be avoided. But this would require the
methods developed in the next section.

VL5 Macroelement Techniques and Spurious Pressure Modes

This section will introduce two general techniques for the analysis of finite ele-
ment approximations to the Stokes problem. We shall first, after some remarks
about spurious pressure modes, consider an abstract convergence result which
generalizes some results of Chapter II. On the other hand, introducing the con-
cept of macroelement enables us to extend the techniques of Section VL4 to a
new class of approximations. Finally, the joint use of these methods will enable
us to make a partial analysis of the 2, — P, element and some other elements
suffering from global spurious pressure modes.

VL.5.1 Some remarks about spurious pressure modes

We already introduced, in Section V1.3, the concept of spurious pressure mode,
the classical example being the checkerboard mode of the Q1 — P element.
The underlying problem is essentially algebraic in nature; in the framework of
Chapter 11 we shall say that spurious pressure modes occur whenever,

e
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that is, when the discrete gradient operator vanishes on nonconstant functions.
From the results of Chapter II, 1t is clear that, in such a situation the stan-
dard inf-sup condition (where quotient norms with respect to Ker B"are used)
cannot hold. There arises the question of whether a weaker form could be ob-’
tained; sgch a weaker condition would explain the success of some numerical
computations using such pathological elements.

. We already discussed in Example 3.8 the checkerboard pressure mode as-
sqc1ated with the Q; — o element and in Example 3.4 some modes associated
with e.qual interpolation elements, We shall now present a few more examples
and distinguish between local and global spurious pressure modes. This will

%ead us.to the concept of macroelement or composite element that will be usefu]
In Section VI.5.3.

Example 5.1; Cross-grid P, — Py element.

apprqximation for velocity and piecewise constant pressure leads to locking
that is, to a null velocity field. On the mesh introduced above, it is easy’
tq see, hov&fever, that nonzero divergence-free functions can be obtained. The
divergence is constant on each triangle. This means four linear relations between
the values of the partial derivatives. It is easily seen that one of them can be
express.ed as a combination of the others, this fact being caused by equality of
tangentm.l derivatives along the straight-sided diagonal. To make things simple
we consider the case where the diagonals are orthogonal (Figure VI.15) and
we la!)el by A, B, C, D the subtriangles. We then have by taking locally the
coordinates axes along the diagonals and denoting u¥ the approximation on

a
‘§

Figure VL.14

K K
SN Ouy’ | Ouf
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Figure VL15

On the other hand, one has at point M,

Ouy  ouf  Quft  ouf Ou§ _0uf fuf P
61:2 - 83:2’ 81!1 - 6:1:1 ! (9.’B2 - (91'2’ 82:1 - 61:1,

(5.3)

It is easy to check that this makes one of the four conditions (5.2) redundant.
The reader may check the general case by writing the divergence operator in a
nonorthogonal coordinate system.

The consequence of the above discussion is that on each composite quadri-
lateral one of the four constant pressure values will be undetermined. The
dimension of Ker B} will be at least as large as the number of quadrilaterals.

Thus, three constraints remain on each composite quadrilateral element. If
we admit that two of them can be accounted for, using the methods of Section
VL4, by the “internal” node M, we obtain an element that is very similar to the
Q1 — Py element with respect to degrees of freedom. Indeed, it can be checked
that, on a regular mesh, an additional checkerboard mode occurs and that the
behavior of this approximation is essentially the same as that of the Q; — P
element that will be discussed in details in Section VI.5.3. O

The above example clearly shows the existence of two kinds of spurious
pressure modes. Let us consider an element where Ker B}, O Ker B* and thus
where dim Ker B} > dim Ker B'.

In the first kind of spurious pressure mode dim Ker B}, grows when h — 0
and there exists a basis of Ker B} with local support (that is, the support of
each basis function can be restricted to a macroelement). Such pressure modes
can be eliminated by considering a composite mesh (in the example a mesh
of quadrilaterals instead of triangles) and using a smaller space for pressure by
deleting some degrees of freedom from the composite elements. We shall then
speak of local pressure modes.

In the second kind, the dimension of Ker B} does not grow when A — 0
and no basis can be found with a local support. We then have a global pressure
mode which cannot be eliminated as easily as the local ones. Global modes
nenally annear on snecial (regular) meshes and are symptoms that the behavior

v
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Some elements ma

Y generate both local .
the above example, @ and global modes as we have seen in

It must be emphasized that local s
when one prefers to work directly on th
mesh on which they could easil
macroelement. We shal] prov
framework will be given.

purious modes are source of trouble only
e original mesh and not on the composite
y b.e filtered out by a simple projection on each
e this in Section VL5.2, where a more precise

Example 5.2: Cross-grid P, — Py element.

t\?nsion of lh.e previous example to the case of ap, -
StrI.%6t). Thx§ ).llelds,. on each quadrilateral, 12 discrete divergence-free con-
Mal?h:,t and 1tfls}::asﬂy seen by the argument of Example 5.1, written at point
, one of them is redundant. Thus, one spuri  wi
. . . , purious mode will appear f

each composite quadrilateral. However, in this case, no global modem\)vill a;())f

ana.lyze this element by the macroelement tech-
alysis of this element is also related to the work

. ) [A] by considering the stream functi i
with a divergence-free function. g unction associated

4

Figure VI1.16

Py approximation (Figure

preted as a signal that the pressure
therefore, can hope to find a cure by
space of discrete pressure to obtain
ses whether or not this stability can
on the original approximation, One
ction. We now introduce an abstract
s of the next sections.

The presence of spurious modes can be inter
field used is in some sense too rich, We,

can.effectively get some result in this dire
setting that will be the key to many result

VL5.2 An abstract convergence result

In this section, we shall work

) in the abstract f
if known applications of the famework of Chapter II. Even

results come from Stakes nrahlnm thalr mennf
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problem

(5.4) a(un,va) + b(vn,pn) = (f,vn),  Yvn € Va, un € Vi,

(5.5) b(un,qn) = (9,91),  Van € Qn, pr € Oa,

for which we suppose a solution to exist. This problem is, of course, an approxi-
mation of the corresponding infinite-dimensional problem posed in V' x Q and we
suppose Vi, C V and Qx C Q. We now consider cases where Ker B} ¢ Ker B*
and where the inf-sup constant k; may depend on h. We also suppose that
a(-,-) is symmetric and V-elliptic (cf.(I.1.38)).

We now suppose that there exists subspaces Vi C Vi and Qn C Qn
defining a stable approximation of the problem. We, thus, have

b(tn, ¢ .
(5.6) sup -'(——h—qi)- > ko 13nllQ/ Ker B,

- Yin € Qn.
snev Nonllv

We recall some notation from Chapter II: then let

(5.7) Z(g) = {v]b(v,9) = (9,9), Vg € Q}
and
(5.8) Zn(9) = {va | b(va,qn) = (9,90), Yan € Qn},

and let us introduce

(5.9 Zn(g) = {dn € Vi | b(ibn,dn) = (g,4n), ¥Yin € Qu}-

Using (5.6) and Proposition 11.2.5, we have

(5.10) inf  Ju—wplly <e inf |ju—vally.
Un€Zn(g) TREVY

In the context of finite element approximation, we shall usually require that the
quantities inf, .y, |lu — wallv and infyu,ev, |lv — willv can be estimated to
the same order of accuracy.

Let us denote Qh the orthogonal complement of Q,, in Qx. We shall make
the following strong hypothesis (which is nevertheless satisfied in many cases):

(5.11) b(on,qn) = 0, Y € Qn, Vo, € Vi

Condition (5.11) implies, in particular, that for ¢, € Ker By, = Z;,(O), one has

IR rs-~ N A v -
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that is
(5.13) Ker By C Ker By,.

We would also like to have

(5.14) Zn(g) C Znly).

This will hold by (5.11) provided g satisfies the condition

(5'15) (g) qh) = O: V(ih € th
This last condition will not be difficult to check in practical cases. It will, of
course, hold in the important case where ¢ = 0.

We can now consider our convergence result. Let (u, p) be the solution of
the continuous problem; we can easily get from Proposition 11.2.4

(5.16)  |ju— un|lv gc( inf

u— inf - )
whEZn(g) “ Whllv + thth ”P Qh“Q

From (5.14) we have

(5.17) inf

— < M f - ~
w,,ez,.(,)”u wplly < inf  [lu~ dnlv.

wheEZn(g

Using (5.10) we have

(5.18) inf flu—1nllv <c inf [Ju—dallv,
Wn€Zn(yg) Th€Vy
and we finally obtain

(5.19) u—ully <c| inf — 0 + anf -
e = wslly S e int flu—onlly + _inf Jlo - anllo)

and the problem is now a standard approximation problem in Vj.

Remark 5.1: As we shall sce when considering examples, it will be possible
when dealing with local pressure modes to take Vi, = Vj. Estimate (5.19) then

shows that local modes cause no loss in accuracy. This can, in fact, be used as
a nrecise definition of lnral wndse N
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We shall now try to get an estimate for pressure. As can be expecte.d, we
shall have to consider convergence for the component (say, 13,") of py 1r1.Q;.
and not for pj itself. This corresponds to the practice of ﬁltem}g out spurious
pressure modes. We substract the continuous and discrete equation and write

(5.20) a(u — up,vn) + b(va,p — dn) )
+5(dn —pa,vn) =0, Yus € Vi, Y4n € Qn,

and we separate pj into its components

(5.21) Pr=Dn+Ph,  Pn € Qn,Pr € Qn.

By hypothesis (5.6) we can find 9, € V; such that
1
~ ~ ~ ~ ~ 11?2 ~ A — A .
(5.22) b(Bn, Gn — Bn) = llgn — nlly,  |lonllv < koll?n prllq
This yields, using (5.11) to get rid of the term b(2n, Da),
(5.23) llin = Palle < e (llu = unlly +llp - gallq)-
By the triangle inequality, we thus have

X . i it o g
(5-24) |lp—nlle < c (llu — unllv + thggh Iz — anllo) + nf llp — dnllq

and no loss of accuracy will occur provided Qn approximates () with the same
order as Q.

We can now summarize these results in the following:

Theorem 5.1: Let Vi, ¢ V, C V and QCQuCQ satisfy hypotheses (5.6)
and (5.11). Let g satisfy (5.15) and let (un,pn) be the solution of (5.4) ang
(5.5), pn denoting the projection of py on Q. One then has constants c1 an
¢y, independent of k, such that

625 fu=uslly e inf flu=snlly + inf llo-ailo)

Th €V

? inf lp— inf [lp—da|lq. O
629 llp=palla < ex(lu=sally + inf llp-alle) + int [lp-dallg

9
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Remark 5.2: Let uy and p, be the solution of the problem

(5.27) (i, B8) + b(dn, pn) = (f, 9),

(528) b(ah) éh) = (gx ‘ih)

Making vy = 95, and ¢n = ¢n in (5.4) and (5.5) and substracting, we get
(529) a(uh - ﬁ},,ﬁ},) + b(ﬁh,ph —ﬁ),) =0, Yiy € Vh,

(5.30) bun —@n,da) =0, Vg € Oy,

Making 4, € Ker By, in (5.29) we have

(5.31) @y = Puy,

where P is the projection operator on Z (9) with respect to the scalar product

a(-,-).0

Remark 5.3: The key of the above result is of course hypothesis (5.10). It
is possible that extensions could be obtained if one could get an estimate on
b(%n, §n) instead of requiring it to be zero. 0

In order to apply Theorem 5.1 to the examples of Section VI.5.1 and to
other cases, we shall need to introduce another special technique, namely, the
use of macroelements. This wil] ultimately lead us to the analysis of the @, — P,
element in Section VI.5.4.

VL5.3 Macroelement techniques

This section may be considered as a generalization of Section V1.4 in which
we proved general stability results for a large class of continuous or discon-
tinuous pressure elements through the use of internal nodes. We also refer to
BOLAND-NICOLAIDES [A] for related results in a somewhat different set-
ting. It is, however, clear that the notion of internal node can be extended
by introducing composite elements or, in the language of STENBERG [A-E]

T v X7 4w
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Let us now define more precisely what a mesh of macroelements may be. We
first suppose given a standard partition of 2 into triangles or quadrilaterals.
This partition bears a more or less standard finite element approximation of the
problem at hand.

We shall denote V3, and @ these finite element spaces. By a macroelement
we now mean the umon of a fixed number of adjacent elements along a well-
defined pattern. Indeed, a macroelement M should be equivalent, through a
proper change of variables, to a reference macroclement M. (STENBERG
[C]). We now define, supposing that one has

(5.32) M=JK,,
1=1
the spaces
(5.33) Vor = {v |2, € Vi, v, =0 in Q\M},

(5.34) Nam = {qnm| am = qalar, qn € Qn, /q,,div vy dz =0, Vv, € Vour},
M

Supposing now that a mesh of macroelements is used, it is possible to try
building on this mesh an interpolation operator Il such that one would have

(5.35) /(g - Oyu) ‘X, dz =0, Yx, € ®n D grad Qx
Q
in the case of continuous pressure fields, or
(5.36) / div(u — Myu) gy dz = 0, Ygn € Qn
0

for discontinuous pressure fields. This would prove stability provided I is a
continuous operator.

It should now be clear to the reader that functions of V; as associated with
internal nodes with respect to the macro-element, will play a special role in
building the operator IT,. Two ways are indeed open. For continous pressure
fields one may try directly to build IT, satisfying (5.35). For discontinuous
pressure fields one can split condition (5.36) into local elementwise conditions.
These are again split into

(5.37) / div(u — Opu) qpr dz =0, Yqp € N]“‘;
K

and

(5.38) / div(u — Mau) qar dz = 0, Yqar € Npy.
K

Condition (5.37) can be handled using the internal nodes associated to
Vo,m. As to (5.38), it reduces in most cases to ensuring conservation of mass
by properly choosing boundary nodes.
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Remark 5.4: 1t should also be recalled that whenever stability has been proven
for a class of discontinuous pressure field elements, any element built by using a
subspace of the pressure space Qn will also be stable. In particular, a subspace
gf continuous pressures can thus be shown to be stable. This is implicitly used
in the work of STENBERG [C]. O

Remark 5.5: In Section V1.4 the choice of internal nodes had been made in to
order to make the equivalent of (5.35) immediate. In the present case, onc has
to deal with internal nodes as they come from the building of the macroelement.
In order to prove the equivalent of Proposition 4.1, we shall have to introduce
an additional assumption. This assumption is essentially algebraic and has to
do with the rank of a small linear system. O

Proposition 5.1: Let us suppose that V}, is defined on a mesh of macroelements
and can be written as

(5.39) Va=Va @ (IeEVO,M).

cht us moreover suppose Q5 C H'(Q) (that is, we use a continuous approxima-
tion for pressure). Suppose that on every M there is a space ®3; O grad Qnlm
such that the matrix associated with

(5.40) /Mgh 'éh dr, Yu, € Vou, th € Dy,

has rank = dim®,;. Let us suppose that on V, we have an interpolation
operator II; such that

(5.41) D Ry~ MolZa <cllollq, r=01 VoeV
M
Then the inf-sup condition holds.
Proof: We want to build T, satisfying (5.35). As in Proposition 4.1, one sets

(5.42) Mpu =yu + Myw

where w = u- I u and (TTyw)ls € Vo,m. We can then by hypothesis find
IT;w by solving (and choosing a minimal solution if uniqueness fails)

(5.43) / H2y~_zéhdz:/ (x — Tu) ¢, dz Yo € Dy
M M - -

There remains to estimate IT2w, which uses the same scaling argument as in
Pronocition 41 1
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The key is thus to check that the matrix associated with (5.40) has full
rank. This may be in some cases a tedious task but is nevertheless, a priori, a
simple problem. In fact a closer look to the result shows that what we actually
need is

div v dz
(5.44) inf  sup Jaa 41V 0y 00

>8>0,
7hE€EQnlm Y, EVo,nr HEhHI,M“‘IhHO,M/IR

that is, in each subdomain M the choice of Vp ar for velocity fields and Qn|m
for pressure leads to a well-posed problem. This condition is strongly related
to the patch test used by engineers (cf,, e.g, ZIENKIEWICZ~-QU-TAYLOR-
MAKAZAWA [A]) although their counting of degrees of freedom is clearly
insufficient. It is clear that the rank condition for (5.40) is a sufficient condition
for (5.44) to hold.

We now turn to the case of discontinuous pressure elements. As in Propo-
sition 4.2 we shall have to control separately the constant part of pressure by
using nodes on M and use internal nodes for the remaining part. We refer the
reader to STENBERG [C] from which we now quote the following result.

Proposition 5.2: Let us suppose on §2 a partition into macroelements such that
(5.45) Ny is one-dimensional.

Suppose, moreover, that there exists an interpolation operator Il : V - W
such that one has

/ div(llpu —u) dz =0, VM,
(5.46) M

ITaullv < cllully.
Then the inf-sup stability condition is satisfied. 0

This contains the case where M is built from one element and thus Propo-
sition 4.2. The proof is a generalization of the ideas of Section V1.4 and we
refer the reader to the work of Stenberg for details. Note that in practice, (5.45)
will follow from (5.44) and that (5.46) means that the pair (Vih, My,) is stable,
where M is the space of piecewise constants on the macroelements.

We shall now consider on a few examples, applications of the above result.

Example 5.3: Taylor-Hood element (QQ2 — Q1)

We consider, following STENBERG [C] a patch of quadrilaterals as in Fig-
ure VL.18. The velocity field will be approximated by a standard nme-nodle
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patch we thus have six degrees of freedom for pressure that could be matched
by the six internal velocity degrees of freedom associated with nodes M, Mo,
and M3 to use Proposition 5.1. STENBERG [C] instead, checks that Nas is
one dimensional so that boundary nodes can be, in the classical way, used to
get (5.46). Proposition 5.2 then proves stability for a macrowise discontinu-
ous pressure field (in this case a most “unnatural” approximation). Stability
for the continuous field is then obvious by Remark 5.1. The original proof of
convergence for this element was given by BERCOVIER-PIRONNEAU [A].

® M10 M2 M@ ®

3

® o ® ®

Figure VL.18

Example 5.4: Cross-grid divergence-free elements.

We consider elements presented in Examples 5.1 and 5.2, namely, the cross-grid
Py — P; and P,— P, elements. Taking as the macroelement M the quadrilateral,
we already checked that Ny is not one but two dimensional. We, however know,
that in the case of Example 5.2, condition (5.46) holds. We thus introduce the
space Qn C Qn by deleting from the pressure the spurious mode on each
macroelement M (that is, a checkerboard patterned discontinuous function on
M). Theorem 5.1 can then be applied using Vi = V4 for (5.11) is a direct
consequence of the construction (as indeed in all cases of local modes). The
same method enables us to eliminate the local mode in Example 5.1. We have
however no way to check condition (5.46) and we cannot conclude from this
the stability of the element. Indeed on a regular rectangular mesh a global mode
arises and the analysis of this element will have to follow the analysis of the
Q1 — Py element in the next section. O

Example 5.5: The Union Jack element.

We consider a composite element made from piecewise linear triangular element
following the pattern of Figure VI1.19. This “Union Jack” element is used as
an approximation for velocity while pressure is taken to be linear on M (and
discontinuous). This composite element has the same degrees of freedom as the
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direct from Proposition 5.2. In practice, such an element could be advantageous
because its elementary matrix can be computed much more economically than
the matrix associated with the Q2 — P; element and the structure of the global
matrix is sparser. There remains to see if this is sufficient to suffer the loss of
one order in accuracy. 0

Figure V1.19

VI1.5.4 The bilinear velocity-constant pressure ((Qy — Fy) element

We now consider the analysis of what is probably the most popular of all
elements for incompressible flow problems (Figure VI.20). This is perhaps also
the hardest to analyze and as we shall see only partial results are known (at
least at the time of this writing). Origins of this element can be traced back
to finite-difference methods (FORTIN-PEYRET-TEMAM [A]) and its peculiar
properties were soon recognized. In particular, the checkerboard pressure mode
was already a familiar feature long before the scheme used was written in terms

of finite elements.
E—

® ®

Figure V1.20

Let us summarize the basic facts. On a regular mesh, for a problem with Dirich-
let boundary conditions, two singular values (cf. Section II.3.2) of the matrix
associated with the discrete divergence vanish instead of one. We thus have
a pure spurious pressure mode in the terminology of GRESHO-GRIFFITHS-
LEE-SANI [A]. When the mesh is slightly distorted, or for other types of bound-
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thus implying an ill-conditioning of the problem. This ill-conditioning is fortu-
nately almost restricted to pressure: we have an impure pressure mode which
can be eventually filtered but does not seem to affect (at least substantially) the
computation of velocity. This is still not, however, the whole story. One could
indeed hope, from all this, that an inf-sup stability condition could hold for the
third singular value instead of the second and that we could have stability in
a simple quotient space. Experimental evidence showed this hope to be false:
on a regular mesh, a large number of cigenvalues converge to zero at order
h (MALKUS [A}). JOHNSON-PITKARANTA [A] indeed proved the constant
kn to be O(h) (see also ODEN-JACQUOTTE [A], BOLAND-NICOLAIDES
[B,C], MANSFIELD {A]). The standard estimates then led to the conclusion
that no convergence occurred, in complete contradiction with experience. The
paper of Johnson and Pitkdranta provided a first result by showing, on a regu-
lar mesh, that under stricter regularity assumptions than usual on the solution
convergence still takes place.

STENBERG-PITKARANTA [A] proved a convergence result, without spe-
cial regularity assumptions, for a special type of mesh. We shall now consider
a new proof of these results using the technique of Section V1.5.2. To make
things simpler we shall first consider the case of a regular rectangular mesh.
We shall thus try to find subspaces Vi and @ satisfying the stability condition
and condition (5.11). For this purpose, we consider a macroelement (Figure
V122) M formed of four quadrilaterals. On this macroelement a piecewise
constant pressure has four degrees of freedom. We introduce a local basis on
M, ¢1, b2, ¢3, and ¢, described symbolically in the figure.

+1 +1 -1 +1
+1 +1 -1 +1
) d1 p b) h2.ar
-1 -1 -1 +1
+1 | +1 1] -1
¢) ¢3, M ) ¢4 pm

Figure VI.21: Pressure basis functions on M

A checkerboard mode will obviously take its roots in ¢4. We, therefore, intro-
duce quite naturally the space

3
(5~47) Qb = S_‘(v ving & )\l\
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and, therefore,

(5.48) Qn = cum bam.
M

The choice of f/h can then be inferred from other well-known elements. We use
as degrees of freedom the two values of velocity at the vertices of M and at its
barycenter and the normal value (rather a correction to this value) at mid-side
nodes (Figure V1.22). This normal node is readily used to control the condition
(5.46) and, in On, Nu is one dimensional (= dim). Stability of V4, Q4 is,

thus, immediate from Proposition 5.2. In order to apply Theorem 5.1 we need §

to check (5.11) that is now

P
Pz 12 Pl
Kz K,
P P
23 14
K3 K,
P
P3 IJ ’
34
Figure VI.22
(5.49) / barg diviy, de =0, VM, Viy.
M

In order to check this, let us consider the shape function w, associated to vertex ‘

Py, for instance, which is the function of @1 (M) having the whole of M asits
support. A straightforward computation then shows that one has

¢4Mdiv_u_;1dz:/ gl-gds—/ wy -nds
K, 8Ka

+/ w, nds—/ w, nds=0.
8K, - K, -

In the same way the shape function w,, associated with node P, satisfies

.50 M

(5.51) / dap div wy, do = / Wy, nds— / Wy -nds=
M K,
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and this is also true in the adjacent element because the mesh is aligned. The
shape function associated with the barycenter trivially satisfies the condition.
Condition (5.11), therefore, holds and we have by Theorem 5.1

652 lz—wmly < (inf Ju-gallv + inf o-gllo).

U, EVH

In the present case it is clear that an error estimate in V5 has the same or-
der as an estimate in Vj and the result is lperefore almost optimal. We also
have convergence of (filtered) pressure in (J, by estimate (5.26). Following
PITKARANTA-STENBERG [A] we can now extend this result to the case
where the mesh is made from super macroelements as in Figure V1.23. A gen-
eral quadrilateral is divided in a regular way into sixteen quadrilaterals. (It is
well known (FORTIN [D]) that on a nonrectangular mesh at least a 4 x 4 patch
of elements is needed to generate a nontrivial discrete divergence-free function.)
We, thus, have four “submacros” similar to the previous case. The space of fil-
tered pressures Qh is taken exactly as on the regular mesh and is still defined
by (5.47). The space Vi is defined by the following degrees of freedom: the
values of velocity at the vertices of the M,, the values at the barycenters of the
M,, and a correction of the component of velocity parallel to the mesh at the
mid-side nodes of the M, internal to SM. It is readily checked that on SM
Proposition 5.2 applies. One can also directly build an interpolation operator
enabling us to check the inf-sup condition. Mid-side nodes of SM control the
part of pressure which is constant on the whole of SM. Internal mid-side nodes
ensure mass balance on each M, and the nodes at the barycenters of the M, end
the job. It must be remarked that the alignment of mid-side velocities along the
mesh is an essential feature of the construction.

Figure YL23: A supermacro S M and its submacros

In order to prove condition (5.11) the only difficult point is to check that (5.49)
still holds on every M,. We refer the reader to PITKARANTA-STENBERG
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[A] for this proof. It is then possible to use Theorem 5.1 and to get optimal
error estimates.

This is still not the whole story about this peculiar element. It is also
possible to prove stability on meshes built from macroelements like in Figure
VI1.24 (STENBERG [C], LE TALLEC-RUAS [A}]) without filtering or other
subterfuge. This is coherent with the known experimental fact that on a general
distorted mesh pressure modes disappear and the inf-sup constant is independent
of h. This last fact is still resisting analysis. It is our hope that the above
technique could be generalized to yield the complete result,

Figure V1.24

The above discussion can be extended to the three-dimensional case. Things
are made still more complicated by the fact that on a regular mesh (let say a
n x 1 x n assembly of elements to fix ideas) we do not have one spurious
pressure mode but 3n — 2 of them. (This will also mean the same number of
compatibility conditions on data so that trouble should be expected from time
to time when using apparently reasonable boundary conditions). These spurious
modes are depicted in the Figure VL.25. One of them is the genuine three-
dimensional checkerboard mode (Figure V1.25a). The other ones are built from
an assembly of two-dimensional modes. In Figure VI.25b we have sliced the
mesh in order to make apparent the internal structure of this mode. There are
3(n — 1) possible slices so that we find the number of modes stated above.

Figure VI.25: Pressure modes
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We now sketch the extension of the above proof to the three-dimensional case
We shall only present the rectangular case to avoid lengthening unduly this
exposition. We, thus, suppose the mesh is built from 2 x 2 x 2 macroelements
(Figure VI.26). Our pressure space (5, will be built from Qn deleting on each
macro-element four (= 3 x 2 — 2)spurious modes sketched in Figure VI.26.

Figure V1.26

The mode depicted in Figure VI.26b has obviously two other symmetrical coun-
terparts. On each macro-element we thus keep the three-dimensional analogues
of the basis functions &, s, ¢ ar,and @a,m of Figure VI.21 (we have obviously
four of them now). We must now introduce V. This is done again by taking off
some degrees of freedom from V},. The remaining ones are sketched in Figure

./

s
. J.//

Figure VI1.27: Degrees of freedom for Vh

The internal node at the barycenter of the element is also used. It is now clear
that Vi, Qy is a stable pais that provides O(h) convergence. There remains
to check condition (5.11), that is, that V}, is transparent with respect to Q.
This is done exactly as in the two-dimensional case by a simple check of flow
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balance at the surface of elements. Theorem 5.1 then applies and we get 0(h)
convergence for velocities and filtered pressures.

It could be hoped that the same kind of analysis could be done for equal
interpolation continuous pressure methods such as the @; — @, approximation.
Unfortunately, we could find no way in which condition {(5.11) could be made
to hold and an analysis of the convergence properties of these approximations
remains an open question. We can, however, introduce an alternate way of
stabilizing such approximations and this is done is the following section.

VL5.5 Other stabilization procedures (Augmented formulations)

It is clear or should be clear from the results presented in this chapter that
the key of success in stabilizing incompressible elements is in weakening the
discrete divergence-free condition. This was done up to now by reducing the
space @y of pressures or by enriching the space V3 of velocity field. Another
still unexplored possibility is to explicitly weaken the condition divy u, = 0 by
changing it to

(5.53) divy u, = gn
when gy, is a (well-chosen) “small” function.

One step in this direction has been done in the work of BREZZI-PITKA-
RANTA [A] who considered the relaxed condition

(5.54) —/ div uy, gn dx + aZh%/ grad py.grad g, de = 0

in the case of a continuous pressure approximation (that is, @, C H(Q)). In
(5.54), « is any positive real number and can be chosen equal to 1. On a regular
mesh this is a discrete form of

(5.55) —divy = —ah? Ap.

It is easy to understand that appearance of oscillations due to spurious pressure
modes will make A, p, large. This will relax the divergence-free condition
thus preventing the growth of such oscillations. It is easy to understand that
appearance of oscillations due to spurious pressure modes will make A&, pn
large. This will relax the divergence-free condition thus preventing the growth
of such oscillations. It is also clear that (5.55) introduces a perturbation in
the problem and that a consistency error (of order h) is unavoidable. A way of
circumventing this problem can be found, cssentially, in the use of the augmented
formulations presented in Section 1.1.5. According to this section, we can now
consider the following augmented formulation:

656 it sup {u [l o [ andive = [ [y de
[e I N [l

Y E€VL hEQM

+ 3 a(k) [ 1Any - gsad an + S de).
1% K
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This gives rise to the variational formulation

.57 u Ag(gh):g(gh) dl‘-/nl?h div yy, da:—/i.gh dz
Q

+ZQ(K)/ (Auy, ~ grad py + f) - Ay, dz =0, Y, € Vi,
K K

(5.58) / qn div_uy, dz
)
—ZQ(K)/K(AE;, —gradpy + f)-grad qp dz =0,  Vgn € Q.
K

It can be scen easily that, by taking
o K) = ahl

with @ > 0 small enough (in comparison to the inverse inequality constant ¢

which appears in (II1.2.5)), we can get stability and optimal error bounds in the
norm

MG P = el o + D Ak llgradpll} x
K

for any choice of the finite element spaces V; and (05, We refer to FRANCA—
HUGHES [A] for the details of this idea which was first introduced in a non-
symmetric form in HUGHES-FRANCA-BALESTRA [A], guided by the basic
ideas introduced in the theory of the approximation of hyperbolic equations by
HUGHES-BROOKS [A] and JOHNSON [B]. A variant of the original non-
symmetric approach can be found in BREZZI-DOUGLAS [A]. A very inter-
esting variant of the symmetric approach (5.57) and (5.58) was introduced by

DOUGLAS-WANG [A]. As we have seen in (1.5.11), it consists in considering,
instead of (5.58),

(5.61) / qn div u, de
e

+ Za(K)/Kumh —gradph + f)- Agrad g de = 0, Vgn € Q.
K

It can be seen (cf. DOUGLAS-WONG [A]) that the choice (5.59) for o K) now
makes the problem defined by (5.57) and (5.61) stable and optimally convergent
for any choice of the finite element spaces V4, @, and for any choice of & > 0.
The following result is proved in FRANCA-STENBERG [A].
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Proposition 5.3 Assume that one of the following conditions is satisfied
(i) (€1 N H5(Q))? C Vi and Qn C C(Q)
(ii) the pair (Vy, £3) satisfies the inf-sup condition
Then the method (5.57) and (5.58) (for @ > 0 small enough), and the

method (5.57) and (5.61) (for any & > 0) are stable and yield optimal error
bounds. O

An interesting aspect which is still to be investigated in an exhaustive way
is the relationship between the use of augmented formulations and the use of
suitable bubble functions to augment the velocity space. To give a simple hint,
let us consider what happens to the MINI element of Example 3.7, when the
bubbles are eliminated by static condensation, that is, by Gaussian elimination
at element level. For this, let (u,,ps) be the discrete solution of the Stokes
problem

a(uh,yh)+/yh~g@dm dx:/i-yh dz, Vu, € Vi,
(5.62) 2 f

/yygmﬁdw=Q Yan € Qn,
0

with the MINI element, that is, Vi = (£} N H)(2) @ B3)?, Q» = £}, and let
us split the solution u, as

(563) w,=upy +uh; uh € (LNHHQ) =Y B, bk € (Bs)”.
K

We first note that, for v, € (B3)? and w, € (£})?, we have
(5.64) a(uy, wy) = a{wy,v,) = 0.

Therefore, if we take v, € (B3)? in the first equation of (5.62) we easily obtain

(5.65) b B, = / (f — grad pa)by, dz
K
where,
(5.66) bk = / le(bx ) de.
K

If we assume now that f is piecewise constant, we can rewrite (5.65) in the
form

(5.67) 88, = vr(f — grad pa),
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(5.68) Yk = / b;( dz.

o
From (5.67), we the get

(5.69) uh =Y (vi/6x)(f — grad pp).|xc
K

Substituting the value of u} given by (5.69) into (5.63), we can now rewrite the
second equation of (5.62) as

(70 [ u}-pdgn do
1t}

+ 3 (vi/6x)(f — grad pa)lx / bk grad;qn dz =0, VYgn € Qn,
% K
or equivalently

670 [ uh-ead s do
o

+ 2 _(7ic/8x)(f ~ grad pa)lx - grad g» =0, Vga € Qa
K
and finally
67 [ uh-prd g do
-+ Z(??{/‘SKMGGS(K))/K(_[* grad pn)|k - grad gn dz = 0, Vgn € Qn
K
which is
.79 [ uh-gndands
+ Y a(K) /K(i — grad pa)lx -grad g» dz =0, Vgu € @,
K
with
(5.74) a(K) = ~% /6xMeas(K) ~ h%.
Note that we now have, using (5.64) and the first equation of (5.62)

(5.75) e(un,vs)+ f v,-grad py dz = / fuydz, Y, € (LINHH(Q))?
1} Q
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and it is easy to check that (5.74) and (5.75) coincide with (5.57) and (5.58)
since Av, = 0. Hence, in a sense, we can say that the introduction of a bubble
function and its elimination by static condensation leads to the augmented for-
mulation (5.56) for a suitable choice of (K}, given here by (5.74), depending
on the shape of the bubble. For more details about this subject, for the MINI
element, we refer to PIERRE [A,B]. However, the relationship between bubbles
and augmented formulations is probably larger as suggested by a simple com-
parison between Proposition 5.3 and Propositions 4.2 and 4.3. Indeed, if one of
the two conditions (i) or (ii) is satisfied, it is always possible, from Corollary
4.1 or Corollary 4.2, to stabilize the proble by adding bubble functions to the
velocity space.

As presented above, the stabilization procedure cannot be used for discon-
tinuous pressure elements where expressions such as (5.54) make no sense. This
is however not a definite obstacle. We may indeed consider two cases.

Suppose that we have an approximation Vj x (4 that does not satisfy the
inf-sup condition but that a subspace V} x Q;, does. If Q;, contains piecewise
constants we could use an elementwise analogue of (5.54) in the same way
as adding bubbles to stabilize. We could even manage so that the (J, part of
pressure is not affected. This could be used for instance to stabilize the Q2 — Q1
approximation that is known to suffer from spurious pressure modes.

Another possibility is offered by employing a mixed method to implement
(5.54). To illustrate this point, we shall now show how @, — Py approximation
(Section VI1.5.4) can be stabilized.

To simplify the exposition we shall consider the case of a rectangular mesh
but the techniques of Chapters III through V could provide an obvious extension
to a general mesh. Let us then consider the (J; — Py of section VI.5.4 and let
us introduce y, € R7jo)(€2, 74). On our rectangular mesh, we have

(5.76) Xl = {(ki, k) k1 = ag + a1z, kz = bo + boy},

and we have div K;JK € Py(K). We may, thus, write instead of (5.54)

div uy, = —¢(div ¥, , Vau € Qn,
570 {( hoh) (div x,,. qn), gn € Qn

(X, mn) = (pa,divimy),  Vmy € RTjg)(0).

This, of course, is a mixed approximation of div u = eAp.

Using the A-trick of Chapter V, one can eliminate x, and obtain a discrete
problem having exactly the same structure as in continuous pressure elements, its
unknown being velocities at vertices and pressure at mid-side points. This has a
major drawback: one can no longer eliminate pressure by a penalty method (cf.
Section V1.7) as this is usually done for a (1 — Pp approximation. One possible
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cure would be to proceed iteratively, that is, to use ¢Ap, to obtain u"+! and
p™*!. For instance the following procedure can be shown to converge (although
slowly in practice):

(5.78) {“(E”“,y) - (", divy) = (f,u),
(divu™*t,q) — e (p"F, q) = ~e2(grad p, grad ¢) — £1(p", q),

provided £, /¢4 is large enough.

As we shall see in Section V1.7 solving (5.78) reduces to a penalty method.
It would from this be quite interesting to find an efficient way to compute the
solution by a more clever iterative procedure.

Finally, let us point out another way in which the @, — Py approximation
can be stabilized. The idea is to consider directly (5.53) and to make gx a
control variable. This supposes that we can define an objective function to be
minimized. We shall show how this can be done using the space @ defined in

Section VI.5.4 by (5.48). We can thus consider, provided the mesh is formed
of 2 x 2 macroelements

(5.79) F(pn) = Py, (pn).

This projection is readily computed by a local process. We can then con-
sider the control problem

(5.80) inf /ﬂ [F(pn)? dz

gnEQn

under the constraint

(581) {a(y-hiy-h) - (phadiv Qh) = (f_)}lh)) Vyh € Vh)
(div uy, 9n) = (gn, gn), Yan € Qh.

The solution of this is equivalent to the solution with ps and g chosen in
Q» as defined by (5.47), which is known to be stable. The advantage here is to

avoid manipulating the problem in Q) that requires the explicit construction of
macroelements.

A gradient method to solve (5.80) and (5.81) can easily be built and leads
to solving a sequence of Stokes problems (with the same matrix).

Let g9 be chosen arbitrarily (e.g., g5 = 0). Supposing g7 known we solve,

(5.82) {“(23)2».) = (phdivy,) = (f,us), Vo, €Wy,
(div uh,qn) = (9h,qn),  Van € Qn.




o
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and then the adjoint problem

vﬂh e Vhy

8
©-83) Ygn € Qn.

{ a(_’lyl:’yh) - (Wf}::div Eh) = 0;
(div AR, an) = (F(PR), F(gn)),

One can update g, by

(5.73) antt = gp + pu Th.

The coefficient p, can be determined in order to get a steepest descent
method. Such a procedure could be extended to other approximations where
a subspace of () is known to yield a stable computation but is hard to build
explicity. It must also be emphasized that (5.82) and (5.83) use the same matrix
and that solving a sequence may be a small increase in computing costs if this
matrix is factored once and for all.

VI.6 An Alternative Technique of Proof and Generalized Taylor—
Hood Elements

We now consider a very popular choice of element for incompressible problems.
Velocity is approximated by a standard P, element and pressure by a standard
(continuous) Pe_; that is, using the notation of Chapter III, v, € (£L)?, ps €
£1 ;. This choice has an analogue on rectangles using (,E)[lkj)2 for velocities and
'C[lk—l] for pressure. Such an approximation has arisen from experimental con-
siderations. First attempts which used equal interpolation (P, — P, for instance)
yielded either locking or spurious pressures. It was realized that lowering the
approximation of pressure by one degree was a way to get good results. These
elements do not fit in the results of the previous section: it is possible to get
a proof of stability for the P, — P, element without adding bubble functions.
The first proof of convergence for this element was given in BERCOVIER-
PIRONNEAU [A] using a weaker form of the inf-sup condition The analysis
was subsequently improved by VERFURTH [A] who showed that the classical
inf-sup condition is indeed satisfied. We give an alternate proof below.

Proposition 6.1: Assume that every triangle K in 7, has at most one edge
on OK. Then the choice Vi, = (H3 N £}) and Q, = £} satisfies the inf—sup
condition.

Proof: Let g5 € Q5 and let q), be its Lz-projection onto sg (piecewise con-
stants). Moreover, let v € Hj () be such that

6.1) / div o dn de = lanlloyme el < et l@ullo/me
(¢}

PO
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We first construct w;, € V; as wy, = v, with I, given by (4.14). Then we
have

/ div wy, ¢n dz = / div wy, i dx +/ div w),(gn — ga) dz
0 Q Q

(6.2) = nl/n +/ div wy, (ga — qn) dz
0

2 12115/, = Nawall1 llgn — dallo-

Recalling (4.14), we have

(6.3) lazalls = M1zl < 2 flulle < 7 11gallo/

5o that (6.2) becomes

(6.4) /ﬂ div wy an > a2 — 7 lanllosmllan — dalo-

We are now going to construct a z;, € V which takes care of the “nonconstant”
part, gn — qn. We first define z, to be zero at all vertices of 7y, and z;, - n to
be zero at all mid-points of the edges of 74. Since z), must be in ()2, we
also need zj - ¢ (tangential component of z,) to vanish on the mid-points on
8. Then for every edge e internal we define z, -t at the mid-point M of e by

(6.5) zp UM) = —le|” (grad gn - 1)(M).
An easy scaling argument shows that
(6.6) llzalls < ez llgn — gallo.

We now have , for every K in 73,
/ div z, qp dz = ——/ zy,.grad g de
K K

6 = -3 Bl amaaon
6 C

K
= 3 (ol jarad nsan)p
Mgan
= ||/grad ga 113 &,
using the fact that z,.grad ¢5 is in P,(K). Now, since grad ¢, is constant in K
and since K has at least two different mid-points M ¢ 852, we can check that

Hlgradgn|}lo,x is zero if and only if g5 is constant. Another scaling argument
then shows

(6.8) [1laradgnl}l? x > ca flas — @nlla &
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From (6.7) and (6.8), summing in K, we have
(69) [ divzuan do 2 eallon — sl
0
‘We look now for v, € Vj of the type
(6.10) vy = wy + Pzp,
with 4 to be chosen. We have from (6.4) and (6.9)
(6.11) /ﬂdiv un qn dz > 1Galla/ ;= 7 l1@nllosmllan — dallo + Bes llgn — @nll5-

Choosing 8 = 1/2 + 7%/(2¢3), we have

6.12) | div o, an 2 lanlm + Sllos = 0l 2 3 min(L,ca) lonlym
On the other hand, from (6.3), (6.6), and (6.10) we have

(6.13) llealls < llwalls + Bllzally < (v + Be2) llgallos m,

and from (6.12) and (6.13)

Jodivu, gn de }_min(l,ca)“ 1 0
ol = 2(y + fey) RO/

(6.14)

A similar proof can be given for quadrilateral elements but this result can
be obtained in a simple way using the macroelement technique of the previous
sections. It is also worth noting that adding a bubble function to the previous
Taylor-Hood element makes stability quite straightforward. Our numerical ex-
perience has been that the bubble function does improve the accuracy of the
element.

Remark 6.1: Another element that has been used because of the simplicity
of its shape functions is the so-called “P) iso P,” element that is sketched in
Figure VL.28. It is a composite element assembled from four piecewise linear
elements for velocity while pressure remains linear on the macroelement. The
above analysis can extended to this case showing that the inf-sup condition
holds. One could use this subspace of a Py — P, equal approximation method
in the context of the stabilization procedure described in Section VI.5.5.
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Remark 6.2: The technique employed in Proposition 6.1 is quite general. It
has been extended by BREZZI-FALK [A] to show a convergence result for
the P3 — P, element which is an obvious generalization of the Taylor—Hood
element studied above. They also show that the essential ingredients, namely,
that the space of velocities can stand a piecewise constant pressure and a clever
use of a quadrature rule, can be used to prove stability of the Qr — Qi
rectangular elements with continuous pressures for every k > 2. They also
show that Q — Q-1 elements with discontinuous pressure exhibit spurious
pressure modes on a regular mesh for every & > 1 which shows that a general
stability proof cannot be obtained. O

® velocity node

X' pressure node
Figure V1.28: The “P; iso P,” element
1}

In some cases, the technique used in the proof of Proposition 6.1 does not
apply directly, but a variant of it, based on Verfiirth’s trick (VERFURTH [A]),
can be employed. We shall illustrate this by proving the stability of the three-
dimensional Hood-Taylor element. The original proof by STENBERG [D] was
done through the macroelement technique.

Verfiirth’s trick is essentially based on two steps. The first step is quite
general and can be summarized in the following lemma.

Lemma 6.1: Let  be a bounded domain in IR with Lipschitz continuous
boundary. Let Vi C (H3(Q))? = V and Q» C H!(Q) be closed subspaces.
Assume that there exists a linear operator Hg from V into V4 and a constant ¢
(independent of k) such that

1/2
615) lloy ~ M vlla < (W™ ilix) *, veev,r=0.1,
K
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where © = UK and hg is the diamecter of K. Then there exist two positive
constants ¢; and co such that, for every gn € Qp
S gn div v, de

(6.16) sup 12,

> c1 llgnlloym — 2 Y _(hk lerad aalg k)
Uy €Va lluall K

Proof. We remark first that the inf-sup condition for the continuous problem,

di d
(6.17) inf  sup Judiveds
cerxay/r vev |12l llgllo/m

holds in the N-dimensional case (TEMAM [A]). This implies that for every
g € Qp there exists a v € V such that

f gn divy, de S f qn div 3% dz 1 fgndiv 197 dz

su — - —
6.18) wenm il =M% 2 |zl
. 1 fgndivede 1 [ qn div (52 — 2)dz
T2 | 2c o

from which we get,

P 1 [ grad gn (T35 — B)dx
> CII%HO/IR To (12l1x

{ qn divy, dz
sup T————

v, EVh “211“1
(6.19)

8 1/2
> lasllorn—(3 D lsmdanli ) -0
K

The second step in Verfiirth’s trick is to prove a kind of inf-sup condition where
the zero norm of g, is substituted by %|gn];. This will be done, for the three-
dimensional Hood-Taylor element, in the next lemma. To be precise, however,
we first have to introduce the element. For this, let © be a polyhedron in IR3
and 7, a decomposition of Q into tetrahedra K with the usual “nondegeneracy”
condition. We assume, moreover, that

(6.20) every I € T, has at least three internal edges.
We now set

(6:21) Vi = (£2(Tw))* N (Ho (),

(6.22) Qn = £{(Th).
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Lemma 6.2: Under the assumptions (6.20)-(6.22) there exists a positive con-
stant c3 such that, for every ¢, € Qh,

qn div v, dz 5 . \1/2
(6.23) sup —f—————— >c ( h .
2 g 2o (o k)

Proof: We shall prove (6.23) by a suitable construction of v,. Let g4 be given
in @ and let K be an clement of 7,,. We define v]x by the following conditions

(6.24) vy, = 0 at the vertices of K,
(6.25) vy = —1*(grad ga 1) e’

at the midpoint of every cdge ¢ of K, where |e| is the length of e and £° is the
unit unit tangent vector to e (the orientation is immaterial, but has obviously to
be chosen once and for all in 73). It is easy to check that

(6.26) lleallix € e hi lgnh k-

We shall use the following well-known integration formula

_ p2(M) p2(V) .
(6.27) /I;pg(x) dx_(%: E —ZV: 20 )Meas(h)

(where M and V vary over midpoints of edges and vertices respectively). for
all py polynomial of degree < 2 on K. We have, with the choice (6.24) and
(6.25) for v,

/qh div v, dz:—/g@dqh~y_h dz
[} 2
= —Z/ grad qn - v, dz
K K
Meas(K
(6.28) =-Y " (grad g, -g;.)(M)—eaé(—)
K M
0 Meas( K
= Y30 12 M)
K M 0
> Cz hi llgrad grflf
K

where in the last inequality we used the nondegeneracy condition |e] > ohg
and assumption (6.20). From (6.26) and (6.28) we obtain

(6.29) fqh div vy, dz cs ZK h?( llgrad (Ih”(Z),K
' lloalls - 1/2°
d (s W lzad

which is (6.23). 0



258 Incompressible Materials and Flow Problems §VL6

The last step of Verfurth’s trick is then to multiply (6.16) by ¢z and (6.23)
by ¢y and sum. We have

J qn div v, dz

{3+ ¢2) sup > ciea lgnlloym

v, EV) “211”1

that is, the inf-sup condition. O

Remark 6.3: The above proof could also be applied to the two-dimensional
case of Proposition 6.1. We presented both to make explicit the use of two
different techniques. O

V1.7 Nearly Incompressible Elasticity, Reduced Integration
Methods, and Relation with Penalty Methods

VI1.7.1 Variational formulations and admissible discretizations

We have already seen in Chapter I that there are problems associated with ap-
proximations of nearly incompressible materials when using the standard varia-
tional principle. Consider, to make things simple, a problem with homogeneous
Dirichlet conditions

A
7.1 inf ,u/ le(2))? dz + 7/ Idiv »|? dz — / f-vdz.
vEHO)? Ja T~ 2Ja a = -

We already noted in Section VI.1 that this problem is closely related to a penalty
method to solve the Stokes problem.

It was soon recognized in practice that a brute force use of (7.1) could
lead, for large values of A, to bad results, the limiting case being the locking
phenomenon that is an identically zero solution. A cure was found in us-
ing a reduced (that is inexact) numerical quadrature when evaluating the term
A fq div u|? dz associated with compressibility effects. We refer the reader to
the papers of HUGHES-MALKUS [A] and BERCOVIER [B] for a discussion
of the long history of this idea. We shall rather develop in detail on this example
the relations between reduced integrations and mixed methods and try to make
clear to what extent they may be claimed to be equivalent. For this we first re-
call from Chapter I, that problem (7.1) can be transformed by a straightforward
application of duality techniques into a saddle point problem

(7.2) infsupp/ le())? d$~—2~/ lgI? d:n+/ gdivyder — | f-vdz
v ¢ Ja~ 2X Ja aQ

for which optimality conditions are, denoting by (u, p) the saddle point,
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(7.3) u/ﬂg(u)=§(1_»)dx+/npdiwdz=/1-gdx, Vo € (Hg(2))?,
= - Q

_ 1
(7.4) /dwuqdm= —/pq dz, Vg€ L*Q).
Q AJa

This is obviously very close to a Stokes problem and is also an example of the
problem studied in Chapter II, that is, find v € V, p € Q such that

(7.5) a(u,v) +b(v,p) = (f,v), VveV,

(7.6) b(u.q) — c(p,q) = (¢9,9), YeeQ.

We then know from Chapter II that an approximation of (7.3) and (7.4)
(that is, a choice of an approximation for both u and p), leading to error esti-
mates independent of A, must be a good approximation for the Stokes problem.
The preceding sections of this chapter, therefore, give us a good idea of what
should (or should not) be used as an approximation. What we shall now see is
that reduced integration methods correspond to an implicit choice of a mixed
approximation. The success of the reduced integration method will thus rely on
the qualities of this underlying mixed method.

V1.7.2 Reduced integration methods

Let us consider a (more or less) standard approximation of the original problem
(7.1). An exact evaluation of the “penalty term” X f, |div v|*dz means that for
A large one tries to get an approximation of u which is exactly divergence-free.
But as we have already seen few finite elements can stand such a condition
that will in most cases lead to locking phenomenon due to overconstraining. In
a mixed formulation one relaxes the incompressibility condition by the choice
of the approximation for p. Let us now see how this will be translated as
a reduced integration method at least in some cases. Let us then consider
Vi CV = (H{Q)?, @n C Q = L}), these approximation spaces being
built from finite elements defined on a partition of . On each element K,
let there be given a set of k points z, and weights w, defining a numerical
quadrature formula (Figure VI.29),

Figure V1.29
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k
(7.7 / flz)dz = w, f(z:).
K 1=1

Remark 7.1: Tt will be convenient to define the numerical quadrature on a
reference element K and to evaluate integrals by a change of variables.

k
a8 [ fayde= [ 16) 1) 4= Y ) TG
K K =1
The presence of the Jacobian J(z) should be taken into account when discussing

the precision of the quadrature rule on K. DO

Let us now make the hypothesis that for v, € Vi and pr, qn € Qn, One
has exactly

k
(7.9) /K v do = Y (@A 50 ()) T(5,)
and

k
(7.10) /K phan dz =3 o, pa(ds) Gald) J(3).

1=1

Let us now consider the discrete form of (7.4)

1
(7.11) f div uy gp dz = / Ph a dz, Yan € Q.
Q AJa

When the space @y, is built from discontinuous functions, this can be read
element by element,

1
(7.12) / an div u, dz = —/ phandz,  Yan € Qn,
K AJk

so that by using (7.9) and (7.10) one gets
(7.13) pr(#2) = Adiv u, (84) of pa(z,) = Miv ua(es),

provided the values of g, at the guadrature points can be used as degrees of
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are unisolvent. Formula (7.8) can, in turn, be used in the discrete form of (7.3)
which now gives

k
Q;J/n €(uy) £ (uy) ot ; (Z w, J(é,)(d@h(@.)(di’v‘gh(i,)))

1=1 :/Qdf-g .

In general the term ) 4 (Eleu, J(ﬁ,)(dw’\gh(i.)(dw’\gh(:&,))) is not an
exact evaluation of [, div u, div v, dz and reduced integration is effectively
introduced. In the case where (7.9) and (7.10) hold there is a perfect equivalence
between the mixed method and the use of reduced integration. Whatever will
come from one can be reduced to the other one. It will, however, not be general
in possible to get equalities (7.9) and (7.10) so that a further analysis will be
needed. But we shall first consider some examples of this complete equivalence
case.

(7.14)

Example 7.1: Let us consider the @ — P, approximation on a rectangle and
a one-point quadrature rule. It is clear that div u, € Py{K) and is integrated
exactly. In the same way a one-point rule is exact for fg pn gn dz when-
ever pn, gn € Po(K). There is thus a perfect equivalence between reduced
integration and the exact penalty method defined by (7.11). 0

Example 7.2: We now consider again the same (}; — Pp element on a general
quadrilateral (Figure V1.30). To show that we still have equivalence requires
a somewhat more delicate analysis. Indeed, at first sight the quadrature rule is
not exact for [ div u,, Ik (&) di.

Let us however consider in detail the term div/\gh = ﬂ/axl +§;2/8x2.
Let B = DF be the Jacobian matrix of the transformation I from X into K.
Writing explicitly

ag + a1 T + ary + a3y

(7.15) F= { . . ..
bo + bi1Z + azy + bazy

one has

716 n_ (ai+asg b +b3p)
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Figure VL30

so that we get

(7.17) B! 1 ( by + b3z —b — bafl) _

= J(#) \—az~azi a; +a3f
But o .
duy Oy . O .
— == — —(b; —b ,
dz; (.%1 (b + bs%) — 57 (b 3”)) 7 ()
Juy _ (i, ., Oiy 1
5;‘—2- - (é—i);(_a2 - (131,') + Biz(al + aay)) J(i:)

When computing [ dﬂ_h J(&) d#, Jacobians cancel and one is left with the
integral of a function that is linear in each variable and that can be computed
exactly by a one-point formula. {1

Example 7.3: Using a four-point integration formula on a straight-sided qua-
drilateral can be seen as in the previous example to be exactly equivalent to a
Q2 — @, approximation (BERCOVIER [A,B]).

The above equivalence is however not the general rule. Consider the fol-
lowing examples.

Example 7.4: We want to use a reduced integration procedure to emulate the
Crouzeix—Raviart P, — P, element (cf. Section VI.3). To define a P pres-
sure, we need three integration points (Figure VI.31) which can generate a
formula that will be exact for second degree polynomials (but not more). The
bubble function included in velocity however makes div u, € P;(K) and
[ div uy, gnde will not be evaluated exactly. O

Figure V131
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Example 7.5: A full iso-parametric J, — @, element is not equivalent to its
four-point reduced integration analogue. O

Example 7.6: A 0, — P, approximation is not, even on rectangles, equivalent
to a one-point reduced integration method, since div u; contains second-order
terms which are not taken into account by a one-point quadrature. 0

V1.7.3 Effects of inexact integration

If we now consider into more detail the cases where a perfect equivalence does
not hold between the mixed method and some reduced integration procedure we
find ourselves in the setting of Section 11.2.6. In particular, b(v,, g) is replaced
by an approximate bilinear form b, (v,, ¢n). We shall suppose, for the sake of
simplicity, that the scalar product on @ is exactly evaluated. Two questions
must then be answered,

— Does by (., .) satisfy the inf-sup condition ?
— Do error estimates still hold without loss of accuracy ?

We have already introduced in Section I1.2.6 a general setting in which
this situation can be analyzed. We shall first apply Proposition 11.2.19 to the
verification of the inf-sup condition for two examples and give an example
where inexact integral changes the nature of the problem. We shall then consider
consistency error on those three examples,

Example 7.7: We in fact come back to Example 7.6 and study, on a rectangular
mesh, the Q2 — Py approximation with a one-point quadrature rule. This is not,
as we have said, equivalent to the standard Q; — Py approximation. We now
want to check using Proposition 11.2.19, that it satisfies the inf-sup condition.
We, thus, have to build a continuous operator (in H!(Q)-norm) such that

(7.18) /ﬂdiv u, gy dz = Z[(div Mpup X Mo x )gx ] area( K),
K

where My g is the barycenter of K and gx the restriction of g5 to K. We can
restrict our analysis to one element as ¢ is discontinuous and we study both
sides of equality (7.18). We have, taking ¢ = 1,

7 10) [A:,, ne A [ . —- .
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7 6 5
—e
h
Sé hx y ¢4
1 2 3
Figure V1.32

Using the numbering of Figure VI.32 and denoting by u, and v, the h'orizontill
and vertical components of velocity at node 7, we can write (7.19), by Simpson’s
quadrature rule, in the form

h
/ div u, d= =%y—'[u5 + 4ug + ua) — —ég[ul + 4ug + u7)
K

(7.20) h, h,
+ —6—[1)7 + 4ve + vs] — 'E[Ul + 4uy + va).
If we write
u4:u5+u3+ﬁ4’ Usl‘—ul;u7+ﬂs,
Us=U5+U7+fle, v =EI——;-E+52,

where ii4, itg, Ug, and o are corrections with respect to a bilinear interpolation,
we may rewrite (7.20) as

h 4. h 4.
/Kdivy_,, dz = %[US+U3+§U41“‘QE[U1+U7+5“8]

(7:21) h 4. h 4.
+ Llor+vs + 30] - gl st 302l

On the other hand, area (K) div u, (Mo k) can be seen to be equal to
h N
(722) —}%y—[U5 + ugz + 2734] e —21—1-['111 +uy + 2“8]
he .
- %[u'r + vg + 206] — —2—[U1 + v3 + 2iig).

If we split 1, into a bilinear part u$ and a mid-point correction part iy, one
can define ITyu,, by setting

{ (Hhﬂh)o = E(I?n
(7.23)

(HE}.) = %fih-

Equality (7.19) will then hold and (7.23) is clearly continuous with a continuity
constant independent of 4.0
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Example 7.8: We come back to Example 7.4, that is, a three-point quadrature
rule used in conjunction with the Crouzeix—Raviart element. We shall not give
the analysis in detail but only sketch the ideas. The problem again is to check
that the inf-sup condition holds through Proposition 11.2.19. As the quadrature
rule is exact when ¢y is piecewise constant, the obvious idea is to build T, u, by
leaving invariant the trace of u, on 8K and only modifying the coefficients of the
bubble functions. This can clearly be done. Continuity is now to be checked and

the proof is essentially the same as the standard proof of the inf-sup condition
(Section VL.3). 0O

Example 7.9: A modified Qy — P, element.

We now present a puzzling example (BREZZI-MARINI [A]) of an element
which is stable but for which convergence is tricky due to a consistency error
term. We have here a case where using a one-point quadrature rule will change
the situation with respect to the inf-sup condition. In fact, it will make a stable
element from an unstable one but will also introduce an essential change in
the problem. The departure point is, thus, the standard Q) — Py element that
was studied in Section VL5 and that, as we know, does not satisfy the inf-sup
condition. We now make it richer by adding to velocity u, |k = {u1,us} what
we shall call wave functions. On the reference element K =] — 1,1[x] — 1,1],
those functions are defined by

=z bo(2,9),
(7.24) { w =4 2(’:', g)
wa = § ba(2,9),
where ba(%,§) = (1—£%)(1—9?) is the Q4 bubble function. If we now consider
(7.25) dplr = {us + agwy,us + agwr} = wy |k + agwg,

we obtain a new element with an internal degree of freedom. The wave functions
that we added vanish on the boundary and nothing is changed for the stability
of the mixed method with exact integration. If we use a one-point quadrature
rule, things become different. We shall, indeed, check that the modified bilinear
form bx (D), ¢a) satisfies the inf-sup condition. Thus, we have 1o show that

%: div @, (Mo, x )Pk hi

(7.206) sup

v Nitalle > ko (lpallo-

This is easily checked by posing on K (we suppose a rectangular mesh to
simplify)

(7.27) Uple = hx prwy.
We then have div &, = 4ps at the integration points, and

(7.28) llanllt, & = hi pr llwgllsk,
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which implies
(7.29) llualls < cllpallo

and (7.26) follows. A remarkable point here is that even the hydrostatic mode
has disappeared. This is an indication that something incorrect has been in-
troduced in the approximation. An analysis of consistency error indeed shows
that usual error estimates fail and that we are actually approximating a con-
tinous problem in which the incompressibility condition has been replaced by
div u + kp = 0, where k = 1575/416 (UGLIETTI [A]). We then see that if in
general for the Stokes problem, making the space of velocities richer improves
(at least does not reduce) the quality of the method, this fact can become false
when numerical integration is used.

Let us now turn our attention to the problem of error estimation. From
Propositions 11.2.16 and (11.2.74) and(I1.2.75), all we have to do is to estimate
the consistency terms

(7.30) oup [6(zy, p) — br (w4, P)
v, (lz,llv
and

(7.31)

sup lb(w, gn) — bafu, an)l

an ”qhHO/KerB'

We thus have to estimate quadrature errors. It is not our intent to enter here
into detail and we refer the reader to CIARLET [B] where examples of such
analysis are presented exhaustively. The first step is to transform (7.30) into a
form which is sometimes more tractable. We may indeed write

(7.32)  b(un,p) — bn(vn,p)

= (b(vp,p — qn) — balwh, 2 — 1)) + (b(2h, qn) — ba(2s, gn))
and
(7.33)  b(u,qn) — ba(u, qn)

= (b(u — vy, qn) — bn( — vy, qn)) + (b(vh, gn) — ba{vn, qn)).

The first parenthesis in the right-hand sides of (7.32) and (7.33) can be reduced
to an approximation error. The second parentheses imply only polynomials.

Let us therefore consider (7.33) for the three approximations introduced
above. For the Crouzeix—Raviart triangle taking v, the standard interpolate
of u makes the second parentheses vanish whereas the first yields an O(h)
estimate. For the two other approximations taking v, to be a standard bilinear
approximation of u makes the second parenthesis vanish, whereas the first yields
on Q(h) estimate, which is the best that we can hope, anyway. The real trouble
is, therefore, with (7.30) with or without (7.32). In the case of the Crouzeix—
Raviart triangle, we can use directly (7.30) and the following result of CIARLET

(B]
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Proposition 7.1: Let f € W; (), pr € Px(K) and denote by Er(fpi) the
quadrature error on element K when numerical integration is applied to fpy.
Let us suppose that Ex (¢) = 0, V¢ € Pyi_3(K), then one has for k—¢/n > 0

(7.34) |Ex(fp)] < chfe (meas(K))' 2= fly o xlpr]ix O

Taking k = 2, g = oo and using the inverse inequality to go from lpe]1 to
lpk]o one gets an O(h?) estimate for (7.30).

The two other appproximations cannot be reduced to Proposition 7.1 and
must be studied through (7.32). We must study a term like

(7.35) sup [6(us, an) — bn (v, qn))
v, flualh

This can at best be bounded. For instance, in the case of the Q2 — Py ap-
proximation we can check by hand that the quadrature error on K reduces to
h% \div Uplo,k PK-

VL8 Divergence-Free Basis, Discrete Stream Functions

We have dealt in this chapter with the mixed formulation of the Stokes problem
and we have built finite element approximations in which discrete divergence-
free functions approximate the continuous ones. It is sometimes useful to con-
sider directly the constrained minimization problem

) ot 3 ol de~ [ fou,am,

where Vj is the subspace of divergence-free functions. In this subspace we have
a standard minimization problem and the discrete form would lead to a positive
definite linear system. Indeed, the solution u, € V; of problem (8.1} satisfies
the variational equation

62 [ eds= [ foo b weew

In the discrete problem, if one knows a basis {wy,.. ,w,,} of Vo, the
solution is reduced to the solution of the linear system

(8.3) Ao Us = Fo,

where

o= [ ctwd)cewd) s, 2= [ [outde
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and
Ao = {a3;}, Fo = {f7}.

Building a basis for the divergence-free subspace could therefore lead to
a neat reduction of computational costs: pressure is eliminated, along with a
certain amount of velocity degrees of freedom. System (8.3) is smaller than
the original one. It must however be noted that with respect to the condition
number, (8.3) is behaving like a fourth order problem, (VERFURTH [C]) which
makes its practical usefulness often dubious. As to pressure, it can be recovered
a posteriori (CAUSSIGNAC [A,B]).

The construction of such a basis is not, however, a very popular method
and is considered as a hard task although it has been numerically implemented
(GRIFFITHS [B], THOMASSET [A], HECHT {A]).

As we shall see the two-dimensional case is quite readily handled in many
cases. The degrees of freedom can be associated with those of a discrete stream
function. The three-dimensional problem is harder to handle: a generating
system can often easily be found but the construction of a basis requires the
elimination of some degrees of freedom in a not so obvious way.

It is also possible to define a numerical procedure, related to static conden-
sation (FORTIN-FORTIN [A]) for the construction of a partly divergence-free
basis.

Finally, we want to emphasize that the construction that we describe will
make sense only if the finite element approximation is good so that the previous
analysis is still necessary even if it might seem to be bypassed.

We first consider a simple example of a divergence-free basis.

Example 8.1: The nonconforming Py — Py element.

We consider the classical non-conforming element introduced in CROUZEIX~
RAVIART [A] (cf. Section VI.3) in which mid-side nodes are used as degrees
of freedom for velocity. This generates a piccewisc linear nonconforming ap-
proximation; pressure is taken constant on each element (Figure V1.33). The
restriction to an element K of u, € V4 is then exactly divergence-free and
is, therefore, locally the curl of a quadratic polynomial. This discrete stream
function cannot be continuous on interfaces but must have continuous deriva-
tives at mid-side pomnts: 1t can be built from Morley’s triangle (cf. Example
111.2.5). The degrees of freedom of the divergence-free basis can be associated
to the degrees of freedom of this nonconforming stream function (Figure VIL.34).
This assigns a basis function to each vertex and to each mid-side node. They
are depicted schematically in Figure VI.35. One observes a general pattern:
divergence-free functions are made from small vortices. o
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X

.-

Figure VI1.33

'

Figure V134

Figure V1.35: Basis functions for a divergence free Pi — Py non-conforming element
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Remark 8.2: The kind of basis obtained in the previous example is typical
of a domain without holes with homogeneous Dirichlet boundary conditions.
Whenever a hole is present, an extra basis function must be added in order to
ensure circulation around the hole (Figure V1.36). This function is not local.

a1

Figure VI.36

In the same way when the flow is entering on a part I'g of 982 and outgoing
on a part 'y, a basis function must be provided to link those parts and to take
into account the potential part of the flow (Figure V1.37).0

Figure VL37
O

We now consider a conforming approximation, namely, the popular Q3 — P,
element.

Example 8.3: The conforming Qy — Py element.

We shall sketch in this example the construction of a divergence-free basis
for the @, — P; element. To make things simple we shall assume that the mesh
1s formed of 2 x 2 macroelements. The general case can easily be deduced.
Let us first look for divergence-free (in the discrete sense, of course) functions
with their support on a macroelement. We have 18 degrees of freedom for
velocity (Figure V1.38) linked by (12 — 1) = 11 linear constraints. This leaves

§VIL8 Mixed and Hybrid Finite Element Methods 271

7 linearly independent functions which can be described by the diagrams of
Figure VI.39.Three of them are associated with the center and one to each

mid-side node. It must be noted that internal nodes are no longer degrees of
freedom. O

.
*—9o—o
o o o

Figure V138
+)' —>\ C-
Y
JAA @,
)
Figure VL.39

Remark 8.4: The “divergence-free” functions described above cannot be taken
as the curl of a stream function as they are not exactly divergence-free. However,
a discrete stream function 1, can nevertheless be built. Its trace on 8K can
be totally determined by integrating u, -1 along the boundary As the flow is
conserved at element level this defines ¥u|gx that is a piecewise third degree
polynomial such that 9y /Gt = w, - n. This stream-function could be built
from the element of Figure VI1.40 ( close to Adini’s element) but u, must be
deduced by taking a discrete curl operation.
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o—1L &

O —@®
Figure VI.40

Other methods which have been studied for elasticity problems can be ex-
tended to the Stokes problem. For instance, the Hellan-Hermann—Johnson
mixed method for plate bending that will be described in Chapter VII has been
extended to the ) —w formulation for Stokes by BREZZI-LE TELLIER-OLIER
(A].O

VL9 Other Mixed and Hybrid Methods for Incompressible
Flows

We have considered in this chapter only the most standard applications to the
Stokes problem using primitive variables. This is not, by far, the only possi-
bility; we already considered in Chapter IV the ¢ — w decomposition of the
biharmonic problem. This can clearly be applied to the Stokes problem. Indeed
any divergence-free functions u € (H3(H))? can be written in the form

©.1) uv=cutl ¥, e HN).
From (9.1) we get

9.2) curl u = w = —~Aq.
On the other hand, taking the curl of (1.1) gives
9.3) —Aw=curl f = f;.

This procedure can be extended to the Navier—Stokes equation (indeed in many
ways) including, if wanted, some upwinding procedure for the non linear tems
(FORTIN-THOMASSET [A], JOHNSON [A]). The reader will find a fairly
complete study of such procedures in GLOWINSKI-PIRONNEAU [A], and
PIRONNEAU (B]. It must be noted that the simplest case of such a procedure,
using for 4, a bilinear approximation, yields as an approximation of u the
famous MAC scheme (Figure VI.41).
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;i

4

Figure VI.41

Indeed, this is nothing but the space RTjo) for which the subspace of divergence-

free functions can be obtained from a bilinear stream function. The Hellan—
Hermann-Johnson mixed method for elasticity described in Chapter I can also
be applied to the Stokes problem with u, chosen in some approximation of
H(div; Q). A direct approach precludes to use a symmetric tensor and forces
to use grad  instead of £(w) as a dual variable (ARNOLD-FALK [A]). This
difficulty has been circumvented by MGHAZLI [A] by enriching the spaces by
the trick of AMARA-THOMAS [A] or ARNOLD-BREZZI-DOUGLAS [A] or
BREZZI-DOUGLAS-MARINI [B].

Finally it must be said that dual hybrid methods have been applied by
A.sTLURI—YANG [A] to the Stokes problem. As in Section IV.1.5 (but in a
simpler setting), this generates elements that are defined only by the traces at
the boundaries and for which internal values can be chosen arbitrarily. This
can be seen as the ultimate case of enrichment by bubble functions: enriching

Dpressure.



VII

Other Applications

In this chapter we shall present a few among the many other applications of
mixed methods. In the first section we shall describe a mixed method for linear
thin plates theory, in the second section we shall discuss some applications of
mixed methods to linear elasticity with a particular stress on the nearly incom-
pressible case, and in the third section we shall report some recent results on the
discretization of the Mindlin—Reissner formulation for moderately thick plates.

VII.1 Mixed Methods for Linear Thin Plates

Let us go back to the variational formulation of the problem discussed in Chapter
I and let us recall it here for the convenience of the reader. We had

(1.1) Lgw)= inf  sup L(z,9),
= TELAM)E GEHAR)

where

Lz 4) =5 ( Et3) /n [(1+v)z - 7 - v(t(D)?]
(1.2)

—/;'Q ¢dz+/fq5d:c;
Q Q

1.3) E = Young’s modulus,
(1.4) t = thickness of the plate,
(1.5) v = Poisson’s ratio,
(1.6) f = transversal load / unit surface,
a7 w = transversal displacement,
(1.8) g = stresses (in the Kirchoff assumption).
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In order to use a more compact notation we set

19 Cr:= %Eta (1 +v)r - vir(1)8)
and write L(r, ) as
(1.10) L(z,4) = 5(Cz,z) = (z, D, 8) + (f,4)

Assume now that we are given a triangulation 7, of 2, and that we are willing
to discretize the stress field g by means of piecewise polynomials for which the
normal bending moment

(111) Mun(g) = (gn)n

is continuous from one element to another. We recall the following Green’s
formulas:

(1.12) /; D,é d:c::—-/ divz-g@quda:—i—/ M,m(g;)@ds
K- = K - 8K = 0n

a

+/ Mn L) Ay

ox D

(1.13) —/K div 1 grad ¢ dz = / Dj(r) ¢ dz — / Qn(z) ¢ ds

valid for all 7 and ¢ smooth in K'; we recall again that here ¢ is the unit tangent
(counterclockwise) vector and

(1.14) m(r) (T n)-t, QH(L):dlv(g) n

If now M,,(1) is continuous and ¢ is smooth we can write

(1.15) L(z,¢) = GT 7')+Z{/ div(r) - grad ¢ dz

_ /BK Mn,(;)%?ds} +(£,9)

A little functional analysis shows that every integral in (1.15) makes sense

(at least as a suitable duality pairing) provided r r and ¢ are, respectively, in the
following spaces:

(1.16) V ={zlzlx € (H'(K));, Mun(z) continuous }
(1.17) Q=WP@Q), p>2
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Remark 1.1: (for mathematicians). We have to choose p > 2 in (1.17) be-
cause for ¢ € H'(K) we have 04/t € H~Y/2(9K), whereas My(z) is in
1, HY*(e;) but not in H'/2(9K). On the other hand, for § € W' we have
that d¢/ot € W—YPP(3K). Since Mp,(r) is in H*(dK) for all s < 1/2 and

since W-/P?(3K) c H™*(8K) for s >—1/p, the boundary integral which ap-
pears in (1.15) can now be interpreted as a duality pairing between H~*(0K)
and H*(8K) for 1/p < s < 1/2 (which is possible since p > 2). 00

The Euler equations of (1.15) can now be written as

. 3¢
T ) wdz — (7)) — =0,Vrey,
(118) (Ce, 1)+ EK:{ /K div(r)-grad wd /a Mu(D) ds} 0,V €

. 9 1\ _
(1.19) ;{/K div(z)-grad ¢ dz — /M Mnt(;)adS} =(-f,¢), V¢ €Q,

which has the form (I[.2.1) if we set

(1.20) a(g, 1) = (Cg, 1),

(1.21) bg,¢) = ;{/K div(z) - grad ¢ dz — /BK Mm(;)%?dS}-

Unfortunately, problem (1.18), (1.19), as it stands, does not satisfy any of the
conditions given in Chapter Il in order to have a well-posed problem. However,
we know that the original problem (1.2.30) has a solution w. If g = C‘l(gzw)
is in H(Q), that is, if the solution w of (1.2.30) is smooth enough, it is easy
to check that the pair (g, w) solves (1.18) and (1.19). Hence we only have to
prove the uniqueness of the solution of (1.18), (1.19).

Proposition 1.1: Problem (1.18) and (1.19) has a unique solution.
Proof: It is obvious that

(1.22) ar,m) 2 alzllf, Vrev

Now let us check a weaker inf-sup condition. For every ¢ in Q, let us
define 7(¢) by

(123) T :T22:¢, Ti2 = T21 =0.
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It is immediate to check that M;.(z)) is continuous across the interelement
boundaries, so that

9 ,
(1.24) ; /8 . Mm(g(qS))ads =0
and, therefore,

(1.25) ¥z($), ¢) = 1413 a-

It is also easy to check, using (1.23) and the Poincaré’s inequality (1.2.7),
that

(1.26) (v < clélin;
hence we have from (1.25) and (1.26),

i s PEO L HH@),9)
s zev IZllvIdlia = seni) [[z(8)llvidl o

lélia l
Z i)l = @

Now using (1.22) and (1.27) we have the desired uniqueness by standard argu-
ments.

1.27)
> 0.

We are now ready to discretize our problem. Following BREZZI-RAVIART
{A] and JOHNSON [A], for any integer k > 0 we set

(1.28) Va= (L5 0V,

(1.29) Qn = Lipy

with the notation of Chapter III. Note that the space V} in (1.28) is made of
tensors whose normal bending moment is continuous across the interelement

boundaries. The degrees of freedom for Q» will be the usual ones (see Section

IIL2). As degrees of freedom for Vj, we may choose, for instance the following
ones:

(1.30) / Mon(2)p(s) ds,  Vp € Py(e), Ve € &,

(1.31) /;:de, Yp € (Pooy (KL, VK € Thy (k> 1)
Ly 2

The possibility of choosing (1.30) and (1.31) as degrees of freedom in Vj
is shown by the following lemma and by a standard dimensional count.
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Lemma 1.1: Let 7 € (Py(K))? be such that

(1.32) / Man(Dp(s) ds =0, Vpe Pyles) (i = 1,2,3),

(1.33) /K; ‘pdz =0, Vp € (Paoy(K))E (k> 1),

then r=0.

Proof: (Hint). From (1.32) we get M,,, (z) = 0. We first show that D; (r)=0.
This is trivial for k£ < 1; for & > 1 take p=D,bwith b = b3 D3z in (1.33)

to get [ b3(D3(z))%dz = 0 and hence, 5; (z) = 0. Now use the formula (see
Section IV.5.1))

: T % - d
(134) /K r:D ¢dz= /K D3(z) ¢ dz + fa [Man(D)32 ~ Ka(2)g] ds
for ¢ € P11 (K); thus we get
/ Kn(z)éds =0, Vo € Poyy(K),
8K

and easily, that K,(7) = 0. It is now simple to show that r = S(g) (see
(IV.5.27) for the definition of S) for some ¢ € (PIC.H-(K))2 with ¢ = 0 on
d = K. Therefore, q1 (for instance) has the form bsz with z € Py_3(K). Now
let us choase in (1.33), p11 such that Op11 /0y = z and py5 = P22 = 0; we get

6‘11 / dr — / 2{
= = - = — zZ4ar = b32 s
0_/ T11p11 dzx / yp11dl‘ q1

so that z = 0 and ¢; = 0. Similarly, one proves that g, = 0. 0
We are now able to define the operator II,. We set, for reVv,
(1.35) /]l/[,m(l'[;,; ~7)p(s)ds =0, VYpe Pr(e), Ve € &,

[

(130 [ (-1 pds=0, Vpe (Pooy()), VK € 7,
K - - = =

Lemma 1.2: Let I, be defined by (1.35) and (1.36). Then we have

(1.37) IMazlly <ellzllv,  vrev,
and
(1.38) b(z — Taz, 1) = 0, VI eV, V¢, € Qp.
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Proof: Formula (1.37) is easy to check. Let us prove (1.38). From (1.12) and
(1.21) we have

(1.39) b(z-Thr, ¢) = —;{ /K (z-Thz) : D, ¢ dx

9¢
- /HK M,m(g—ﬂhg)a?ds}

and from (1.39), (1.35), and (1.36) we get (1.38).0

Lemma 1.3; If I, € Vi is such that

(140) b(ghv(ﬁh) = Oa v¢h € Q’U
then
(141 b(__th,gb) =0, Vé €Q.

Proof: We have from (1.13) and (1.21)

=— S(T . T %— T s
(142) Uz, , ) = ;{ [ piz,) ¢ +f ()2 Qu(r, ) 3

Integrating |, ax Mn0¢/0tds by parts and recalling the definition of Kn
in (IV.5.3) we then have

L43) bz, 4) = _Z{/K D;(gh)qbdx——/aK Kn(z,) $ ds).
K

Note that (1.43) holds for any 7, and ¢ piecewise smooth. If now (1.40)
holds, we first have Di(z,) = 0 by choosing ¢|x = b3D3(z,), (for k > 2,
otherwise the property is trivial). Hence, we are left with

1.44 Kn(r ds =, A4
(1.44) ;/M (z,)én b€ Q

Since K, is made of Dirac measures at the vertices plus polynomials of
degree < k — 1 on each edge, it is easy to see that (1.44) implies K, (;h) =0.
Therefore, we have proved that if I, € Vi satisfies (1.40), then D;(;h) =0

and X,, (;h) = 0. Now we insert those two equations into (1.43) and we get
(1.41).0
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This last property was denoted, in Chapter II, as Zx(0) C Z(O) We
have seen that, together with the existence of the operator IT,, t?us property
is so important that it can provide optimal error estimates even in desperate
situations (no ellipticity, no inf-sup condition) like ours.

Actually we remark first that (1.27) and Lemma 1.2 provide, through Propo-
sition I1.2.8, the following inf-sup type condition:

b(z,,
(1.45) inf  sup )

T 2 € > 0 (c independent of A).
oneQn 7 eva 1T, llvIdnls

On the other hand, since Q4 and Vj are finite dimensional, (1.22) and
(1.45) ensure that the discrete problem has a unique solution. We are now ready
for error estimates.

LA wh) is
the discrete solution of (1.18) and (1.19) through (1.28) and (1.29), we have
(1.46) lle — g,llo < ¢llg — Magllo.

The proof is immediate from Proposition 11.2.4. O

Proposition 1.2: If (o, w) is the solution of (1.18) and (1.19) and (&

From (1.46) and standard approximation results we then have
(1.47) llz - g,llo < ch**igfless.

Proposition 1.3: With the notation of Proposition 1.2, we have
(1.48) lw — wally < e {B**iglleyr + 25+ wllig o).

Proof: Let ¢, € Q4 to be chosen. From (1.45) we have for some I, EW
cllgn — walhllz,llv < b(z,, én — wh)
(1.49) =b(z,, bn — w) +b(z,,w — wy)
=b(z,, 0 —w)+alg-g,,1,).

It is now elementary to see that ¢, can be chosen in such a way that

(1.50) p (—%(w —¢n)ds =0, Vp€ Pi(e), Ve € &,

(1.51) lw = alli < ch**![lwllgyo.
With such a choice we have

- = iv(r,) - grad(w — dz
ez =i =1 [ 4v(z,) - gmado — gu)

<z, v llw — ¢alh
< ch* |z, v [lwlles
so that from (1.49), (1.52), and (1.47) we get (1.48).0

(1.52)
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Remark 1.2: Result (1.48) is not optimal as far as the regularity of w is
involved, Actually it states

llw —wally < eh* ffwllyyz (s < &+ 1),

while an (s + 1)-norm on 1w should be enough for optimality. A more sophis-
ticated analysis (FALK-OSBORN [A], BABU§KA—OSBORN-PITKARANTA
[A]) shows that

(A53) o= wnll < bl (s< k42 0<r<1)
for £ > 1 and
(1.54) llw = whlo < ch? llwlly fork =0.

In particular, the approach of BABUSKA~OSBORN—PITKARANTA [A]
is of special interest because, by a suitable use of mesh-dependent norms in V;,
and Q4, they can show that the discretized problem (in the new norms) satisfy
the abstract assumptions (I1.2.34) and (11.2.35) so that optimal error estimates

V4 and Iv5. O

Remark 1.3: In the actual solution of the discretized problem, the most con-
venient way is to disconnect the continuity of 2, - n and to enforce it back
via Lagrange multipliers As. Then one eliminates g, at the element level and
one solves a symmetric and positive definite system in the unknowns A, and
wx. The procedure is identical to the one described in Section V.1 and we refer
to it for a detailed description. As far as the error estimates for the Lagrange
multipliers A, are concerned, recent results have been obtained by COMODI

[A].O

Remark 1.4: It is interesting to analyze the relationship between the mixed
methods described here and some nonconforming methods for fourth-order prob-
lems. For instance, the following result is proved in ARNOLD--BREZZI [A]
Let us consider the space built by means of the Morley element £§'NC described
in Example I11.2.5 and let us define

3
(1.55) an($n,¢s) == \1253”2) Z/K[(l_’/)gzlbh'£2¢A+VA¢hA¢h]dl‘.
K

For every ¢, € £§‘Nc, let d’)I; be the piecewise linear interpolant of on (that
is, 45,1, € S} and qﬁ,’, = ¢y at the vertices). Consider now the modified Morley
problem: find ), in L‘,g’NC such that

(1.56) W(¥n, @n) = (f,44), Vg, € £2NC
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Then we have

(1.57) Dyn=g,, #i=u",

h)
where (gh,wh) is the discrete solution of the mixed problem (1.18), (1.19)
through (1.28), (1.29) for k = 0. We note explicitly that, in the case of variable
coefficients, the equivalence is more complicated. Note also that d3y /on|. =
Anle for all e € &, where Ay is the Lagrange multiplier introduced in the
previous remark. Note also that we have from ARNOLD-BREZZI [A]

(1.58) l¥n = wlln < ch? flw]ls

which improves on (1.48) and (1.54) since it requires only H3-regularity on
w. This is particularly striking since the cost for computing ¥y is cheaper (or
equal, using A4) than the cost for computing (g,,ws). 0

VIL.2 Mixed Methods for Linear Elasticity Problems

We shall now present some among the many mixed approximations of the two-
dimensional linear elasticity problem. For convenience of the reader we recall
here the mixed formulation which we already introduced in Chapter IV. We set

(2.1) T = {z € H(div,Q), /ﬂtr(;)da; =0}, U=(1}Q))?

22 a(g,1)= /n(ﬁgl) :;D + ﬁ tr(g) tr(_I_)) dz,

@3) bz = /n div(z) v dz

We recall that tr(r) = 7y, + 75, and that ™ =5 8tr(1)/2. Note that
we are using (X, U) instead of (V,Q) as in the abstract ‘theory. We recall as
well that A and g are the Lamé coefficients. Considering again, for the sake
of simplicity, the case of homogeneous Dirichlet boundary conditions, we may
write the problem as follows: find g € X and u € U such that

24) { B

It is very easy to check that

tiz,u)=0, Vrerx,
):(i,y), YvelU

—
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and that
(26) WD) > g, Vres

Moreover, setting (as in Chapter II)

KerB={rex, b(z,v) =0, VQEU}={£€E> divr =0}

and defining

2.7 IzlIZ = NlZIE + lldw 2013 (< i),

we have from Proposition V3.1 that

(2.8) «2,1) > o(u) [Izll2, Vr € Ker B.

Hence from (2.5), (2.7) and (2.8) we know that the problem (2.4) is well posed
1n the sense of Chapter II.

If we now choose some finite-dimensional subspaces ¥, and Un, we must
be careful to have the discrete analogues of (2.5) and (2.8) verified. However
we see here a delicate point. In order to prove an inequality of type (2.8) we
needed, in Proposition IV.3.1, divr = 0. Hence, our life would be a lot easier

if we had the “inclusion of the kernels” property: Ker By C Ker B. In other
words, we must require from our spaces Xy, and Uy the following property:

29) Ker B, = {z, € s, b(z,:04) =0, Vo, € Un}
CKerB={rex, div r = 0}

At the same time, we still need the existence of an operator Il : £ — 33,
such that

(2.10) Yz -Thz,v4) =0, Vu, e Un,
(2.11) IMazllz < e fiz)js, Vzex

We Saw many examples of discrete Spaces satisfying (2.9) , (2.10) and
(22.11) in Section IIL.3, for the approximation of spaces of type H(div,$2) and
L*(Q). Tt seems, at the first sight, that we could just use a pair of vectors

(2.9), (2.'1(3, 'and (2.11) is actually very difficult. Let us make a few rough
computations in order to understand why: assume that we take Uy of type £9
(1t is reasonable to take discontinuous functions if we are willing to get (2.9)).
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Then, in each triangle, we try using polynomials of degree k + 1 for 5. We
have, in each triangle,

3(k+2)(k +3)

(2.12) 3 x dim(Pyyy) = >

unknowns. In order to obtain (2.10) we try building an operator I, such that
(213) / [(z-Taz)-n)-p,(s)ds =0, ¥p, € (Pele:))?, (i=1,23),
and

(2.14) L(g— IIng) g(gk) dr = 0, Vp, € (Pk(K))z.

Now (2.13) amounts to 3 x 2 x (k + 1) conditions and (2.14) to
(2dim( P (K)) — 3) conditions, that is, (k + 1){k + 2) — 3 conditions. Now, we
still need Il 7 to be in H(div;2) and this requires the continuity of (Ilxz) - n
at the edges and introduces six additional conditions. Consider finally that, in
(Pr+1)%, there are tensors which surely satisfy 7 - » = 0 and div 7 = 0. They
have the form: =y, = 8%b/8y?, T2 = T = —0%b/9z8y, T92 = 0%b/82?
with b € Pyy3 N HZ(K). Thus, we have (k — 1)(k — 2)/2(= dim(Pr43 N HE)
tensors to throw away because they are insensitive to (2.13) and (2.14). We are
left with

3(k +2)(k + 3) (k-D(k-2) o
2 2

—6(k+1)— (k+ 1)(E+2)+3-6—

and we do anticipate trouble. At our present knowledge there are basically three
possibilities at hand:

(1) to give up the symmetry of T and enforce it back in a weaker form by
some Lagrange multiplier;

(2) To give up the use of polynomial functions, for instance going for composite
elements (hence, using piecewise polynomials inside each K);

(3) to employ an augmented formulation in the sense of Section 1.5

We shall present here some examples of each one of the first two possibil-
ities and give an hint about the third one.

Therefore, we start by giving a short idea on the approximation of (2.4)
by means of discrete tensor spaces which are not symmetric. This idea, to our
knowledge, was first used by FRAELIS DE VEUBEKE [C] and his school; it
was then used by AMARA-THOMAS [A] and more recently by ARNOLD-
BREZZI-DOUGLAS [A]. Other recent results can be found in BREZZI-
DOUGLAS-MARINI [C], MORLEY [A] and STENBERG [F,G]. The example
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that we are going to present here is very close to all those previous works but
has the merit to allow a shorter presentation.

We consider first the space obtained basically from the BDF M, element
(cf. Section 111.3) with k& = 2,

@.15) In ={z, Iz, €(£3)*, z, - n continuous and
of degree < 1 on cach e € £}

and its subspace

(216) I ={z, € Ty, Ltr(;h) dz = 0, /Qas (z,)pde =0, ¥pe £}
where we used the notation

(2.17) as (£) = 721 — 712 (= asymmetry of T)

We note that, z, being locally of degree 2, the orthogonality of as () o
Py enforces only a weak symmetry. Hence, Tj, ¢ X (defined in (2.11)) and it

must therefore be regarded as a nonconforming approximation of £. Next we
take

(2.18) Un = (29)2 cuU

and we consider the following discretized problem: find (o 2y} € Zp x Uy
such that T

(2.19) {“(gméh) +b(z,,u) =0, Vr, €%,
b(gh'gh) = (_f_"gh)v Yy, € Up.

We .shall first show that Ty, has a local basis; then we will show that (2.19)
has a unique solution and finally we will give optimal error bounds.

Pr_oposition 2.1: Any 7 € (P(K))* with 7-n € Pi(e,))? (i = 1,2, 3), is
uniquely determined by the values of B

(2.20) / (z-n)-pds,
(2.21) /}; 7 :g(p) de,

(2.22) L as (;) pde,

VB (S (P] (e;))2 (z = 1, 2,3),
Vp € (Pi(K))?,

Vp € P(K).
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Proof: Check first that (2.20)~(2.22) define 18 = 12 + 3 + 3 conditions which
equals the dimension of (P,)* with - n € (Pi(e:))? on each e,. Hence, we
only have to check that the homogeneous system has only the trivial solution.
Equating (2.20) to zero gives £-» = 0 on K while equating (2.21) and (2.22)
to zero gives div 7 = 0. This implies 7 = curl(¢) with ¢ € (B3(K))?. Note
now that as (cgrl@)) = —div ¢ so that equating again (2.22) to zero we have

/ ¢ -grad pdz = 0, ¥p € Py(K),
K

which implies ¢ = 0.0

Remark 2.1: The above results do not really imply a local basis for Ty, if
we keep fn tr(;)dm = 0. We saw, however, that this condition is used only to
simplify some proofs (in this case it can be imposed a posteriori) and is not
really used on the computer unless A = +oo0. O

Now we will look for sufficient conditions in order to prove existence and
uniqueness of the solution of (2.19). We have the following immediate result.
Proposition 2.2: Let 7, € Iy satisfy
(2.23) oz, ) =0, VYo, € Un.

Then T also satisfies div I, = 0.
The proof is obvious. [0

Next we have

Proposition 2.3: For any T, € Ker B, we have
(2.24) a(z,,z,) 2 c(w) Iz, Iz, 1z €Ker By,

with e(u) independent of A € [0, +o0).
Again the proof is an easy adaptation of Proposition IV.3.1. I

Proposition 2.4: There exists a linear operator T : (H!(Q))* — T4 such that
(225) b(; - Hh;;ﬂh) =0 y vﬂh € U’h

(2.26) Iazllz < ellzll
and, moreover,

2.27) Iz — Wazlly < ch® ||z]la-
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Proof: Using Proposition 2.1 we define I, 1 by

(2.28) /g (z-1)-n-pds=0, Vpe (LAE)?
(2.29) /K(H,,; —1):elp)dz =0, Vpe(P(K))?, VK € Ty,

(2.30) /nas (Thz ~)pdz =0, ¥p € £3(Th).

Note that (2.30) actually implies [,as (IIyz) p dz = 0 since 7 € ¥ im-
plies as (z) = 0. Note also that if [tr(r)dz = 0, then (2.29) implies
Jatr(Tlar) dz = 0, taking p = (z,y) so that £(p) = 5. Now it is clear

that integrating (2.29) by parts and using (2.30) and (2.28) we have, for all
vy € Un = (£9),

(2.31) / div(lThz ~ 1) - v, dz
p -z

:—/I-{(Hh_z_—_z_):g(yh)d:c+/aK(Hh;—£).ﬂ.ghds:O

thich proves (2.25). Then (2.26) and (2.27) follow from (2.28)—(2.30) with a
simple scaling argument (see Section II1.2.4). 00

Now, proceeding as in Proposition 11.2.8 we have

Proposition 2.5: The following inf-sup condition holds:

b(z,,
2.32) inf sup —oars)

vietn 1 sy Iz, isliuallo

>e>0
with ¢ independent of k. O
From Propositions 2.3 and 2.5 and Theorem I1.1.1 we then have

Theorem 2.1: Problem (2.19) has a unique solution. O

We are now ready for the error estimates.

Theorem 2.2: If (g,u) is the solution of (2.4) and (2, us) is the solution of
(2.19), we have B

(2.33) g, — allo +llun — ullo < c(m)h? (llulls + llgfls).
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Proof: We just have to pay some care to the nonconformity X, ¢ X. We have,
using (2.24)

234) (w)llg, - ¢l <alg, —g.,9, —9)
' =alg, —¢,g, ~ heg) +a(g, —g,Thg — ).
Nowset T, := g, —IIxg and note that from (2.4), (2.19), (2.25), and Proposition
2.2 we have
(2.35) divr, =0,
which implies, using (2.19)
(2.36) a(g,,z,) =0.
On the other hand, recalling the definition of a(-,-), (2.2), and the relation
2P /u+1/2(A + p) tr(2)é = (u), we have
2.37) a(g,;h) = / T, 1 &(u) dz.
preay
Now from (2.16) and (2.35) we have, for every v, € (£3 N H})Z,

(2.38) /1}‘ 1e(yy) dz = / 7, rgrad v, do :/ —div(z'_h) cvpdz =0
[ o~ - 4] -

so that from (2.37), (2.38), and standard approximation theory we get

(2.39) la(g, 2, )1 < eh?® [|ullallallo -
From (2.34), (2.27), (2.36), and (2.39) we have
(2.40) lz, = 2llo < e(u)h® (llellz + [lulls)

Now let @, be the orthogonal projection of u onto (£9)?%; from (2.32) we know
that there exists a 7, € Y5 such that
(241) cllgy — unllo Iz, lle < b(z,, 2 — uy) = b(z,, u — uy),

the last equality following from the definition of #,. Using again the fact that
Jaz, glvy) dz = [y, - grad(v,) de for all v, € (£3)?, we now have

Ib(z,, ) +,/Q;" te(u) dz| = |/n[-£" rgradu+1, 1 £(u)] dz

< eh? |z, llollulls
which combined with (2.41) yields (using (2.4) and (2.19))

(2.42)

(2.43) cllan — unllo flz, lle < ch? {Iz, lloliulls + a(g, — 2, 7,),

so that, from (2.43), (2.40), and standard estimates on ||u — u,{lo we obtain
(2.33).0
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Remark 2.2: If we define

= Lf0u Ow
@) o= 3{5m - 5}
and
(2.45) o(z,7) = / as (1) v dz,
¢

we may see that, in general, an approximation of (2.4) with relaxed symme-
try requirements corresponds to a conforming approximation of the following
continuous problem: find (g, u,w) € (H(div;Q))? x (L*(Q))? x L*(Q) such
that

a(g,z) + b(z, u) + c(z,w) =0, Vre (H(div; Q))?,
(2.46) be,v) = (f,v), Vee (L)

c(g,r) =0, Yy € L¥(Q).
In particular, the method described above corresponds to an approximation of
(2.46) where (H(div;Q))? is approximated by pairs of BDFM,, (L%(Q2))? is

approximated by (£2)2, and L2(2) by £3. Moreover, in the formulation (2.19)
we did work directly in the kernel of Cj:

(2.47) KerCh = {z, | e(z,,7n) =0, V7 € £7}.

This was possible because we were able to construct a local basis of weakly
symmetric tensors. If we had approximated the problem in the full form (2.46),
we would also obtain

(2.48) lw = whllo < ch?.

Note, however, that in our analysis we made “a wild use” of the degrees of
freedom (2.20)—(2.22). At our knowledge this approach (that is, to work directly
in the kernel of Cj) cannot be used with “smaller choices” for . However, if
one wants to use an element with lower degree (and less degrees of freedom),
one can go back to form (2.46) which allows the use of less ambitious elements.
For instance, one can think of approximating (2.46) by means of:

(i) pairs of Raviart~Thomas elements of lowest degree for g";
(ii) piecewise constants (= (£3)?) for uy;
(iif) piecewise linear continuous elements (= £1) for wy.

This does not work. However, we may enrich the tensor space, with curl(b)
for & € (B3)? (thus adding two more degree of freedom per triangle). In that
way one gets the PEERS element of ARNOLD-BREZZI-DOUGLAS [A] which
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converges with an O(h) rate (uniformly in v € [0, 4-00}). Another possibility is
to use pairs of BDM elements of degree 1 for @, and again u, and wy, € LIt

is proved in BREZZI-DOUGLAS~MARINI [B] that, enriching again the tensor
space with curl (B3)?, we have

(2.49) llz = 2, llo + 1l@s — uallo + llw — wallo < ch?,

where i, is the projection of u onto (£3)2.

Obviously many other choices are possible. For equilibrium methods (in-
stead of mixed; but the difference, at a second sight, is negligible) AMARA-
THOMAS [A] considered a family of elements with reduced symmetry, whose
element of lowest degree coincides (at third sight) to the one described here. In
the same framework see also STENBERG [B].

If one discretizes (2.46) with continuous u and w (and discontinuous g),
one can reach (after elimination of o by static condensation) a final matrix in
the unknowns u and w. This is particularly interesting in applications to shell
problems since it makes an explicit use of the “drilling degrees of freedom” (see
HUGHES-BREZZI [A]). O

Remark 2.3: From the computational point of view, the best approach for
solving, say, (2.19) (but the same holds for all the other elements of this type) is
to relax the continuity requirements on 7 - n by means of Lagrange multipliers
A, at the interelement boundaries. Then we can proceed as in Section V.1 and
eliminate o® at the element level. In the case of (2.19) we can also eliminate
uy, afterwards and be left with a matrix which is symmetric and positive definite
in the unknowns A, (generalized displacements). This would also produce an
O(h®) approximation of u. 0

We turn to the second possibility considered at the begining of this chapter,
that is considering test and trial functions which are not polynomials in each
K. The simplest example would be to use, in each K, functions which are
piecewise polynomial on a given subdivision of K into subelements. We obtain
in that way the so-called composite elements which have been widely used in
particular for constructing conforming approximations of spaces like H%()
requiring (essentially) C*-continuity. To our knowledge the use of composite
elements for the mixed formulation of elasticity problems was introduced in
JOHNSON-MERCIER [A]. More recent results in this direction have been
obtained by ARNOLD-DOUGLAS-GUPTA [A]. Here we shall present first
the Johnson-Mercier element (for triangles) and then give a short idea on the
Arnold-Douglas—-Gupta family of elements.

Assume then that each triangle K € 7}, is subdivided into three subtriangles
K, (j = 1,2,3) as indicated in Figure VII.1, where, for instance, B is the
barycenter of K.

ks
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T
3

Figure VIL1

Now consider the space

(250) JM(K)={z|z€H(div;K), zlx, € (P(K;))} (5=1,2,3)}
Note that in (2.50), the condition r € H(div; K) requires that 7 -n be continuous

from one subtriangle to another. We need the following lemma.

Lemma 2.1: If £ is a function on K such that ¢| K, be constant (j = 1,2,3)
and

(2.51) /K épdz =0, Vpe P(K),

then £ = 0.

The proof is left as an exercise. O

We may now choose the degrees of freedom in J M, (K).

Proposition 2.6: An element £ of JM;(K) is uniquely determined by the
following 15 degrees of freedom

(252) / (;ﬂ) ’Edsi VB € (Pl(ei))za 1= 1;213;

N

(2.53) /I;;:gd:c, ¥p € (Po(K))L.

Proof: It is clear that dim(J M, (X)) > 15 (that is, 3 x dim(P;)? minus the 12
conditions needed to enforce the continuity of 7 - ). Hence we must show that
if 7 is such that B

VE € (Pl(ez))zv i= 1)2a31

/(; n)-pds =0,
(2.54) &
.

p dz, V_B € (PD(K))f,

K
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there follows T = 0. Clearly (2.53) implies £-» = 0 on §K. Now for every
v € (P1(K))? we have g(v) € (Po(K))j so that

/d_ivz-gdx:—/zzg(y)dzzﬂ.
K - K- -

Applying Lemma 2.1 this implies div 7 = 0. It is easy to see that then z must
have the form

‘ 2p/y? —8%/0zd
(2.55) = Airy(¥) = (—;If//gzay azzjaizg

and that £ -p = 0 implies that ¢ in (2.55) can be chosen in such a way that
Y =8¢/6n=0o0ndK.

Since (2.55) also implies ¢ € P3(K;) (j = 1,2,3) and ¥ € C*(K), then

we conclude that ¢ = 0 (see, for instance, CLARLET [B] on the unisolvence of E

the Hsieh-Clough-Tocher element). 0

We are now ready to construct approximations for ¥ and U as in (2.1).
We set
Tp = {gh ];h Eg(div;ﬂ), ;th e JM(K),

2.56
(2.56) YK €Ty, / tr(z, Jdz = 0},
a

2.57) Up = £9.

It is very easy to show that, from Lemma 2.1, we have Ker B, C Ker B, that
is,

(2.58) {z, €4, 0(z,,u4) =0, Yu, € Un} C {z ] divz = 0}.
Now we have, from Proposition IV.3.1 that
(2.59) a(z,,z,) = c(w) llz,ll3, Yz, € Ker Ba.
Finally, it is easy to check that the operator Il defined by
(2.60) / (th—:h —-;) -p ds =0, VE (S (E?(Sh))z»
En

(2.61) /(Hh;— ) pdz=0, Vpe (LY,

0 £ £
satisfies
(2.62) b(Maz —7,v,) =0,  Vu, €Uy,
(2.63) IMazllz < elizlls
and
(2.64) Iz~ Mazllo < ch? [izfl2-

We can, therefore, use Theorem I1.2.1 and get the following result.

PrAo
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Theorem 2.3: If (o, u) is the solution of (2.4) and (g, ,1,) is the solution of
the discretized problem corresponding to the choice (2.56) and (2.57), then

lle — g, flo + llu — uallo < e(p) [llg — Tngflo + %ig[f,h flu — vhllo]

< e(p) b* {llgllz + llufl2). O

(2.65)

Remark 2.4: The space (2.56) contains 15 degrees of freedom per triangle,
whereas the space (2.16) had 18 degrees of freedom per triangle. However the
elements of (2.16) are polynomials in each K and the ones in (2.56) are only
piecewise polynomials in each K, and then more difficult to deal with. The
choice between them should therefore be made on a “case by case” basis. O

The composite element presented in (2.56) corresponds (roughly) to the
choice ¥ = 1. The Arnold-Douglas—Gupta families starts with £ = 2 and
considers, on each K = UJ K, subspaces of

Wi = {z, | 2, € H(div; K), 7,|K, € (P(K)));, (5 =1,2,3),

(2.66) divz, € (Peoi(K)))-

Now we have to choose (arbitrarly, but some reasonable choice is indicated
in ARNOLD-DOUGLAS-GUPTA [A]) three tensors in W, - 73 , 757 ,7(¥,
the only constraint being

267)  ar? +eor? + esr® ¢ (P(K)):,  V(er,e2,¢3) # (0,0,0).

The tensors ;ﬁ') (r = 1,2,3) clearly depend on k, and will be the only “com-
posite” part in Lj. We set now

(2.68) ADG(K) = span{(P(K))?, 1) (2 ()}
37 =hp

=h ’ =
The corresponding degrees of freedom are
2.69) / (z-n)-pds,  Vpe(Puler))’ (i=1,2,3),
(2.70) / T :¢(p) dz,
= EL

2.71) /K T : Airy(p) dz,

Vp € (Pe-1(K))?,

Vp € (Bi+2(K))* N HI(K).
Then, we set for k£ > 2,

(272) Tw={z, |z, € H(div; ),

thT € ADG(K), VK € Th,/tr(gh)da: = 0},
2
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(2.73) Uy =£0_,.

In particular Arnold-Douglas—Gupta proved that if II, is the operator from
(H())? into T naturally associated with the degrees of freedom (2.69)+2.71)
and if P, is the orthogonal projection on £)_,, then we have the commuting
diagram

s 2 v
(2.74) 1, l phl

div
Ly —— Us

which, as we have seen, implies all sorts of optimal error bounds. We refer to
ARNOLD-DOUGLAS-GUPTA {A] for the proofs and additional results.

Remark 2.5: The previous composite element (2.56),(2.57) of Johnson~Mercier
did not satisfy (2.74) because, in this case, div(L;) € Uy, On the other hand,
the element (2.16), (2.18) satisfies (2.74) somehow, but £ € .0

Remark 2.6: We might also consider a reduced ADG element. For instance
we can define

= {z, | 7, € H(div;Q), 1, |x € ADGx, 7, nle € (Pe-1(e))’,

Eh
(2.75)
VK € Th, Ve € &}
(plus, always formally, the condition [, tr(z, ) dz = 0). For k = 2 we obtain
an element which has, on each triangle, only 12 degrees of freedom, satisfies
(2.74), and has an O(h?) accuracy (in L*(2)) for both & and u.

Remark 2.7: In recent times, relevant progress has been made on this subject
by the use of stabilizing techniques such as those described in Section 1.5 and
Section VI1.5.5. For the present context they correspond in adding to formulation
(2.4) a term like

6h22{/ div_q-div_tda:—/ f-divzdr}
e dvz f-dvr

K K

(clearly vanishing if ¢ is the continuous solution). The parameter é has to be
conveniently chosen. Note however that this will work for discretizations using
continuous displacements and discontinuous stresses, that is, in a functional
context which is different from (2.1) (and less “mixed”). We refer to FRANCA-
HUGHES [A] (and references therein) for additional information. 00

[

-
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VII.3 Moderately Thick Plates

VIL3.1 Generalities

We end this chapter with a hint on the theory for the so-called “Mindlin—
Reissner plates.” The corresponding model stands somehow in between the
standard three-dimensional linear elasticity and the two-dimensional Kirchoff
theory for thin plates. Let us recall it briefly. Assume that we are given a
three-dimensional elastic body that, in the absence of forces, occupies the re-
gion Qx] —¢,¢], where 2 C R? is a bounded smooth domain and ¢t > 0 is
“ small” (but not “too small”) with respect to diam(§2). This is what we call
a “moderately thick” plate. We shall assume, for the sake of simplicity, that
the plate is clamped along the entire boundary dQx] — ¢,¢[ and acted by a
vertical load f = (0,0, f3). The Mindlin model assumes that the “in plane”
displacements u; and uy have the form

31 ui(z,¥,2) = —2f1(z,y), uaz,y,2) = —2Ps(z,y)
and that the “transversal” displacement u; has the form

32 us(2,9,2) = w(a, y).

The corresponding strain field therefore takes the form:

(3-3) { eu==z 0f1/0z; £33=~2 2/ By; €x=0;
2612:~2(5ﬂ1/3y+5ﬂ2/ax), 25&3:3w/3r~ﬂ1, 2E23=aw/ay—ﬁ2;

and assuming a linear elastic material the stress field is

(34) {Uu = (eutvern) E/(1-v"); 02 = (exztven)E/(1-v?);
oij =€ Ef/(14v); 4,j=1,2,3, i # .

If we now write the total potential energy
(3.5) H:-é—/ (g:e—2f -u)drdydz
ax]-t,1 - -

in terms of 3 and w through (3.1)~(3.4) we obtain (after some calculations)

(3.6) I = a(ﬁ B)+ / |grad w — ﬂ|2 de dy — / f3 wdzdydz,
Qx]-t,t]

where

G al.B) = 55— / aﬂl Vaﬁz) ai

+("gfl+%—%)%ﬂ§+( > )(%&+%ﬁ—’) | dzay,

e
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Ek

(38) A= 2(1 4+ v)

and k is a correction factor which is often used to account for the “nonconfor-
mity” of (3.4). Indeed from (3.1)~(3.4) we deduce that 0,3 and 093 are constants
in z, whereas the physical problem has o135 = 623 = 0 on the upper and lower
face of the plate:  x {t} and © x {—t}; hence (3.4) is often corrected by
assuming that o153 and o3 behave parabolically in z, vanishing for z = +t, and
assuming the value (3.4) for z = 0. To tell the truth, this explanation is not
100% satisfactory for our mathematical minds. However, after all, it is not our
business here to discuss the validity of a model as far as its application gives
answers that are considered good enough by engineers. We however refer to
DESTUYNDER [A] and CIARLET [B] for a precise discussion. The assumed
boundary conditions lead to the kinematic constraints

3.9) G =082=w=10 ondq.
Hence, we define the spaces
(3.10) H=(H}2)} W=H)Q); V=HxW,

the generic element of V will be denoted v = (7, () with p = (71,72) € H and
¢ € W. We finally recall the Korn’s inequality,

(3.11) Ja > 0 such that a(n,n) > « ||7(l3, Vn € H.

It is easy to check that, for any fixed ¢t > 0, functional (3.5) has a unique
minimizer (8, w) on V which satisfies

(3.12) 13 a(ﬁ,g)—!—/\t/(g@dwﬂg)-ﬂdzdy:(], Vpe H,
a

fa¢dedydz, Y({e€W.

x]—t,t[

(.13) At/(g@dw—é)-g@d(dzdy:/
o [

In particular, we have

3
Gy G+ [ lesdC =y > e (alf + KD

for any v = (7,{) € V. Note that for fixed ¢, (3.14) always guarantees that
(3.12), (3.13) is a nice linear elliptic problem, so that, for instance, any reason-
able conforming approximation of V' will have optimal order of convergence.

The troubles start when we take a smali t; then the constant in (3.14) dete-
riorates and so does the constant in front of the optimal error bound. In practice,
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it is well known that if we use “any reasonable conforming approximation of
V7, we will get pretty bad answers for small 1. Here we shall make an analy-
sis of the nature of the trouble. We shall also give some sufficient conditions
on the discretization so that it stays good for ¢ smaller and smaller. The one
dimensional case was treated by ARNOLD [A], but the two dimensional case,
as we shall see, is more complicated.

The first thing that we have to do is to construct a sequence of physical
problems P, (f > 0) that fulfil} the following requirements

(1) each P is of type (3.12), (3.13) and so has a unique solution B(t), w(t);

(2) there exists two constants ¢, cy with 0 < ¢; < ¢2 such that

(3.15) &1 < 1B + el < e

A possible answer is to fix Q, £, and v, and to choose, for each ¢ > 0, the
load f3(x,y, z) of the form

t2
(3.16) fa(z,y,2) = 59(2,y)

with g(z,y) fixed (once and for all) independent of #. It is clear that (3.16)
implies

(3,17) / fswdzdydz = t3] gwdzdy = t3(g, w)
Ox)-1,1] fa

so that, dividing (3.6) by t® , each problem P; will amount to minimize, in V,

—2
(3.18) o, = %a(_@,_ﬁ_) + ! 2/\ /]g[gd w— E]z dzdy — (g, w).

Proposition 3.1: Let §(t), w(t) be the minimizer of (3.18) in V. Then (3.15)
holds with ¢; and ¢y independent of £.

Proof: We obviously have

(3.19) a(B, ) +17*)|grad w — B} = (9, w).
Using (3.11) and a little algebra we deduce from (3.19) that
(3.20) 8113 + {hwll} < (e, Mllgllo 1wl

which implies the boundedness of ||3||s + ||w||;: from above. Then one checks
that

VY
2

(2D ze(@ 8+ lemd v g - (6,w) < —c <0
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with ¢ independent of ¢ (this is checked easilyy: we minimize II; on Vj =
{(n,{)In = grad ¢} and we get a negative minimum independent of ). Now
from (3.19) and (3.21) we deduce

12
30(8,8)+ —
which implies that [|8||; + ||w|1 is bounded from below by a positive constant.
This completes the proof. O

(3.22) llgrad w — B|Ig > ¢ > 0,

It will be convenient, in order to carry on the analysis, to introduce the
auxiliary variable

(3.23) 7(t) = At~ (grad w(t) — B(1)),

which is related to the shear stresses but does not go to zero with . We can
now write the Euler equations for II; in the form

(3.24) a(B,m) + (v, grad ( —n) = (9,¢), Y(n,() eV,

(3.25) 7 =M""(grad w - ).

This is now taking the form of the abstract problem studied in Chapter II and
it is clear that if we are going to find a uniform bound for y(¢), this will be in
the dual space of the space that is the image of V' through the mapping

(3.26) B:(n,¢{) — (grad { ~ 7).

In what follows, we are going to use the notation:

. _[0¢ _9¢
rgt.¢—>rgt¢—{ay, az}’

_ __Ox1 | Oxe
rot._)g——vrotx_ '@‘i" oz

This is different from the notation we used in other parts of this book, but is
more consistent with the current literature for Reissner-Mindlin plates. Note as
well that (for the same reason) we are using here (z, y, z) instead of (z1, x4, z3).

Proposition 3.2: The mapping B is surjective from V onto the space I' =
Hy(rot,{2) defined by
(327)  Ho(rot; Q) = {x]x € (L*(Q))?, rotx € L*(Q), x -t = 0 on 92}

(3.28) X oo rotsry "= Hxllf + lirotxli5

(where ¢ is the unit tangent to Q) and admits a continuous lifting.

P S

w“w o«
F PRI R
2

4
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Proof: We shall show that for ever € Hy(rot; i
Proof: X Y X o(rot; Q) there exists ¢ ev

(3.29) X =grad( — g,

(3.30) lIKh + il < ¢ Il #20grot,02)-

For this we first choose v € (H})? such that

(3.31) divy = —rot ¥,

(332) ”Q”I S C”I'Of _X_“Oy

this is obviously possible because

(3.33) /rotxd:z:dy:/ x-tds=0Q.
Q = F:To

Then we set

(3.39) 7= (m,m2) := (~va,v1),

so that from (3.31) and (3.32) we have

(3.35) rot 7 = —rot x,

(3.36) (lzll: < Jlrot x|lo

Now choose ¢ as the unique solution in f} () of

3.37) A¢ =divy +divyp € H71(Q);

we have, using (3.36) and (3.37)

(3-38) Kl < e (div xl) -1 + [ldiva|_;) < @ (llxllo + lIrot x[lo)-

We now have
div(grad ¢ — 7) = div X in Q,

rot(grad ¢ — n) =rot x in 2,
(g@dC—g)-L=l-£=00n39,

(3.39)

which easily implies (3.29).
G380 ¥y implies (3.29). On the other hand, (3.30) follows from (3.36) and

From Propositions 3.2 and I1.1.2, we have the following result.
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Proposition 3.3: Let (8, w,y) be the solution of (3.24). Then we have

(3.40) (Ol < e,
where
T =(Ho(rot; Q)Y
(3.41) =H"(div; Q)
={y |y € (H Q)Y divy € H"(Q)}

with the norm

(342 I li2 = lyll2y + lidiv y)f2, -

Proof: From Propositions 3.2 and I1.1.2, we have

ad { — n) -y dz dy
(3.43) nf sup Jalgrad ¢ —n) - x

c>0
xer moev I Ollviixile -

and from (3.43), (3.24), and (3.15) we have (3.40). It remains to check that
the norm (3.42) is equivalent to the natural dual norm induced by (3.28)3.41),
which is an exercise of functional analysis. 0

Remark 3.1: In the case of beam problems, the space I” is replaced by L?,
which makes things much easier. 0

We are now able to make the result of Proposition 3.1 more precise.

Theorem 3.1: Let (8(t), w(t), y(t)) be the solution of (3.24), (3.25). Then we
have fort — 0

B(t) — B, in (Hs(D))?,
(3.44) w(t) — wo in HI(9),
¥(t) — 7, in T,

where B, wo, 7, satisfy

(3.43) a(B,m) + (1, &ad ¢ —n) = (9,¢), Y(m eV,
(3.46) B, = grad w,
(3.47) EN%wg = 12(1 — v?)g.

§VIL3 Mixed and Hybrid Finite Element Methods 301

Proof: The weak convergences (a prior, up to a subsequence) in (3.44) just
follow from (3.15) and (3.40). A passage to the limit in (3.24) gives (3.45),
whereas (3.46) follows from (3.25). Now putting (3.46) into (3.45) and using
(3.7) yields (3.47). 0

Remark 3.2: Additional results in this direction can be found in
DESTUYNDER [A]. O

We can now apply the result of Proposition 11.4.3 to estimate the conver-
gence rate as a function of ¢> which plays here the role of €. This leads us
to a convergence rate in \/¢ = {. In order to improve this bound and also to
enable us later to get sharper error estimates, we now introduce a decomposition
principle for (3.24) and (3.25). We shall first prove

Proposition 3.4: Every element y € I can be written in a unique way as
(3.48) y =grad ¢ +rot p

with ¥ € H}(Q), p € L*(Q)/R, and rot p = (9p/dy, —Op/0=). Moreover,
we may use

(3:49) 1212 = 1l + NPl Zscarm

as a norm on I,

Proof: Set £ = divy € H™!(2). We define 4 to be the unique solution of
~OY =€, ¢ € Hj(Q), and we set ¢ = y — grad 4. One has div a = 0 so
that & = rot p and p is determined up to a constant in L?(£2). Condition (3.49)
is then immediate. 0

Remark 3.3: The decomposition introduced in Proposition 3.4 also holds for
(L%(2))?, H(rot;2), and Hy(rot; ), the difference between these spaces being
in the regularity of the p component. Indeed, taking v = grad ¥ + rot p with
Y € HY(Q), we have

(350)  y€ (LX) @ peH(Y/R,
(3.51) v € H(ro;Q) < pe€ HYQ)/R,

(3.52) v € Ho(rot;Q2) & p € H*(Q)/R and g—i—z =0ondQ.0

It is now a simple exercise to transform problem (3.24), (3.25). We write
(3.25) in (L?(2))* using y = grad ¢ + 1ot p and we multiply by suitable test
functions. We then get the following proposition:
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Proposition 3.5: Any solution of (3.24) and (3.25) is a solution of the following
problem (and conversely):

(3.53) (grad9(t), grad€) = (¢,€), VE € Hy(9),

a(B(t),m) ~ (rat p(t),n) = (grady(t),m), Vi € (H3(R))?,
0 { (B, 1) = S 00t )1t ), Vo € HU@)/R,

(grad w(t), grad x)) = (B(t), grad x)) + t*(grad ¥(t), grad x),

(3.55) Vx € Hi(Q). O

It must be noted that (3.54) implies 9p/dnlsq = 0 and p € H*(Q) so that
v = grad ¥ + rot p is indeed an element of I' = Ho(rot; Q). Note also that
%(t) is actually independant of t.

We have thus reduced, through Proposition 3.5 our original problem to the
following sequence

— a Dirichlet problem (3.53) that is independent of ¢,
— a “Stokes-like” problem (3.54),
— a Dirichlet problem (3.55).

This decomposition shows us that it is the p component of v which depends on t.
Before coming back to the quantification of this dependency, we rapidly develop
the analogy between (3.54) and a Stokes problem. Let us set g~ = {—n2,m}
. We can write (3.54) in the form

2.56 (gt nt) + (pdivet) = A (grad 9,1), Vot € (Ho(Q))%,
20 (div B*,q) = ¢* (grad p,grad q), Vg € H'(Q)/R.
The limit problem (¢ = Q) is, thus, a standard Stokes problem and we shall
be able to rely on results of Chapter VI to build approximations. We shall not

analyze here the case ¢ # 0 in too much detail . However, it is important to see
the behavior of p ast — 0.

Proposition 3.6: Let 8(t), w(t), p(t) and 1 be the solution of (3.53)«3.55).
‘We then have
G537 18Oz + lw@llz + M2 + IOl + ¢ lpDl2 < < llgllo,

where the constant ¢ is independent of 2. [0
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We refer to BREZZI-FORTIN [A] for the proof of this result which is
based essentially on the regularity properties of the Dirichlet problem and the
Stokes problem. O

An important point is that (3.57) does not improve for a more regular ¢
(even in a smooth domain). It is not possible to bound ||p(t)]]2 uniformly in 2.
The reason is that the normal derivative of p(¢) vanishes although this is not
the case for the solution p(0) of the limit problem. We, thus, have a boundary
layer effect which has been studied by ARNOLD-FALK [C]. Their analysis
shows that an analogue of (3.57) exists for [|3||5;2 and [|p|j3j2;r but not for
more regular spaces.

Remark 3.4: We can now try to apply Remarks I1.4.4 and I1.4.5 to our problem.
Denoting Wy = {p | p € H*(Q)/R, dp/dnlen = 0}, it is clear that we have

(3.58) I(r0t .10t ) <  l1pllw, a2 5 e
Whenever the solution p(0) of the limit problem is regular enough (this is the
case for smooth data and a smooth domain) we shall have,

(3.59) p(0) € [L3(Q), Wyls, VO < 3.

No improvement is possible because of the fact that dp(0)/0n # 0. We can
thus apply Remark 11.4.5 to get for § < 2

(3.60) [18(2) = BO)Ix + llp(t) = p(O)llo + [fw(t) — w(O)l|1 < et® |[p(0)lla,

where [|p(0)|l¢ is the norm of p(0) in [L2(Q), W,.]s . We can summarize (3.60)
by saying that we have an O(t3/2-¢) convergence. This requires, however, a

smooth domain. In the case where 952 is only Lipschitzian, the best we can get
is O(t). O

VI1.3.2 Discretization of the problem

We now turn our attention to the discretization of our problem (3.24), (3.25).
Let us assume that we are given finite-dimensional subspaces Hj, and W), of
H and W and use Vi, = Hy, x W), as a subspace of V. We also discretize
the space I' = Hy(rot; 2) by I'y and we consider the discretized problem:find
(éh’wh’lh) such that

V(ﬂh,(h) € Vhl

(3.61) (B m,) + (1, 812d Gu — 11,) = (9,6n),
| VX—PA S Fh-

(grad ws — #,,x,) — (t*/A) (3,,x,) = 0,

Note that we do not have, in general, Ty = M~ 2(grad wy —ﬁh) unless we take
precisely T'y, = grad Wy, — Hy,.
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We can also introduce the limit problem:find (4
T'x such that
(3 62) a(gch‘zh)-i_(l()h’ggd Ch —Qh) = (y,Ch). V(Z?_h,Ch) € Vh)
- (xp grad won = fg,) =0, Vx, €Th.

Oh’wm"l()h) € Hy x Wy, x

Thus we have a problem of the form (I.1.5). It also comes from the results
of Section IL.4 that to get a good approximation of (3.24) and (3.25) by (3.61)
(that is, with convergence properties independent of t), it is necessary for (3.62)
to be a good approximation of (3.45) and (3.46). Therefore, we should choose
Hp, Wy, and Ty, so that the following properties hold.

First, we must have a coercivenes property:
(63  a(n,.n,) 2 eo (I3 + 1612, V(n,,¢r) € Ker By,
where, of course
(3.64) Ker B, = {(Eh'Ch) e W l (X.h‘g-@d n— Qh) =0, Vlh € F},}.

Condition (3.63) is the usual condition that a(-,-} be coercive on the kernel of
By. This is, here, a nontrivial condition because a(-, -) is not coercive on Vj as
this was the case in the Stokes problem of Chapter VI.

We also know from Chapter II that we must satisfy in our choices of
discrete spaces an inf—sup condition

(3.65) nf oup  XweRdG )
_)ghEI‘h (Qh,(h)EVh |I_>£h”F' “(_’_’_hlch)HV

> ko > 0.

The constants «p and ko must obviously be independent of & if we want to get
the proper result. Now we can start to see why the problem is so nasty. If we
use the strategy of making V) richer in order to satisfy the inf-sup condition
(3.65), we will get a large Ker By, and (3.63) may fail. Making Vj smaller could
cure (3.63) but then (3.65) will give us trouble. It is somehow a “short cover”
problem: either your arms or your feet will freeze! Moreover, we do not like
to use one space with poorer approximation properties than the other, as errors
will sum up. Choosing spaces satisfying (3.63)~(3.65) is not an easy task as we
shall see below. Let us first apply the results of Chapter II to our case. We first
have

Propesition 3.7: If (3.63) holds, then (3.62) has at least one solution and
(8, wos) is unique. Moreover if (8, wo) is the solution of (3.45), (3.46) we
have the estimate

(3.66) I8, =Byl + [lwo—waonlls

. ) ) Y
Sc{(gh‘ch‘{éﬁ(”h(|lﬁo By llHlwo—Cull) + inf iy, X,,”r}

This is a direct application of Proposition 11.2.4. 1
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We are,therefore, led to the study of Ker B, as this will be the key to

ellipticiy of the bilinear from a(-,-) and to error estimation. We shall first
consider the most “naive” case.

Example 3.1: The direct approach.
Let us suppose given 5 C H and W, C W, and let us choose
(3.67) Ty = grad{(W)) —

This choice implies that

(3.68) Ker By = {(n,,¢s) | n, = grad (s} C Ker B,

so that (3.63) evidently holds.

It is important to note that the choice (3.67) is very easy to use on the
computer. Actually, in all applications, one deals with a positive thickness ¢
and, therefore, with problem (3.24), (3.25). Now condition (3.67) means that
you are actually minimizing the functional II; given by (3.18) on Vi = Hp x W
and that you do not even see y, (nor I';). Condition (3.67) is then one of the
most widely used choices for Ty, although, in general, one does not realize it.

Now a quick glance to Ker By will make us understand that we have a
long way to go. Consider n = {—12n,mn}, that is, a rotation of w/2 of 1,
It is clear that if (7, ,(a) belongs to Ker By, we then have by (3.68)

(3.69) div Q'J; =rot 7y, =0.

Therefore, with choice (3.67), the infimum which appears in (3.66) is actually
taken on a subset of functions 7, satisfying (3.69). But we have already scen in
Chapter VI, for the linear Stokes problem, that it is not recommended to work
with velocity fields which are exactly incompressible (because there are too few
of them in general). A direct application of (3.67) is likely to lead to bad results
(e.g., locking) unless a very special choice of Hj and W has been done. O

We can also be guided by the decomposition principle of Propositions 3.4
and 3.5 in which a Stokes-like problem explicitly appears. This yields the kind
of approximation described in the following.

Example 3.2: Solution through the decomposition principle.

We shall, instead of directly approximating v, explicitly approximate each com-
ponent of its decomposition into grad ¥, +rot ps. Moreover as (3.54) shows us
that 5, and py are analogous to a velocity field and a pressure ficld in a Stokes



306 Other Applications §VIL3

problem, we shall try to use some results of Chapter VI to build a suitable
approximation,

Let then Hy, be built by employing the MINI element of Chapter VI (figure
VIL2), that is, in the notation of Chapter III.

Hy =(L£iNH{(Q))? @ Bs,
(3.70) {

Wy, = «Q% n H&(Q)

Figure VII.2

These are spaces of piecewise linear polynomials enriched by a bubble function
in the case of Hy. We also introduce

(3.71) Tp = grad(£] N HY()) ® rot £1.

This space is then a strict subspace of piecewise constant vector functions for
which we imposed, a priori, the analogue of the decomposition principle of
Proposition 3.4 and Remark 3.3.

It is then straightforward to check that Ker B, is made of the pairs (1,,¢n)
in Hy x Wy such that,

(.72)  (n,.rot g4) =0, Vg4 € £},
(3.73)  (erad (n,grad ¢n) = (n,,grad ¢s),  Vén € £l N Hj ().

Now condition (3.73) is especially nice as it implies
(3.74) 6alls S e limylls,  ¥(n,,Cn) € Ker By,

and hence, (3.63) holds from (3.11) and we can apply Proposition 3.7. To get
a really usable result we, however, need to replace in (3.66) the infimum on
Ker By, by an infimum over the whole space. As we have learned in Chapter
I1, this amounts to checking the inf-sup condition (3.65) and we can do it using
Proposition 11.2.8.

Given (8,¢), we must be able to build B, Cn such that

(3.75) (zh,gh-—g@d Ch)—(lh,g—g@d ¢)=0, Vlhef‘;.,
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(3.76) 18,11 + 11Cally < e (BN + 1i¢]1.),

where, in (3.76), c is independent of . But from the construction of I'y, condi-
tion (3.75) can be decomposed into

(erad s, 8, ~ grad ¢4) — (grad éh, B ~ grad ¢) = 0,
(3.77) Vo € i n Hi(Q),
(rot pa, 8, — grad ¢4) — (rot Pr,f—grad() =0, Vp, e £l

To do such a construction we use the trick already introduced in Chapter
VI to deal with the inf-sup condition for the MINT element. We first build B,
by taking a standard interpolate of £ and then, adjusting the bubble function so
that one has for any piecewise constant my, € (£9)2,

(3.78) B, — B.my) = 0.
We have seen in Chapter VI that this can be done in a continuous way, that is,
(3.79) 18,111 < cliB]];.

By (3.78), the fact that grad ¢, is piecewise constant and that (rot py, grad (n) =
(rot pa, grad ¢) = 0, (3.76) reduces to

(3.80) (grad @5, grad ¢4) = (grad én, grad (), Vén € Wy,

and this is a discrete Dirichlet problem for which we have IIKally < e Ji¢lh,
yielding the second part of (3.75). This proves the inf-sup condition and we
can, therefore, apply to problem (3.62) the basic results of Chapter II. We can
Summarize this in the following proposition:

Proposition 3.8: Problem (3.62) with the choice (3.70) and (3.71) has a unique
solution. Moreover if (B4 wo, 7,) is the solution of (3.45) and (3.46), we have

G8L) 18y=B,,ls + llwo—wonfl; + 17~ Il
< ch {llwolls + |l7, |l z(diviay }- O

Remark 3.5: The result of Proposition 3.5 can be applied to the discrete prob-
lem in the present case. Indeed, we built, a priori, T} in order to obtain a
decomposition principle. Problem (3.61) can be written in the form
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a(B,m,) — (rot pa,n,) = (grad yu,n,), Y, € Ha,
(3.83)

t2
—(B,,10t qn) = y(rot pa,rot qn), Vg € £,

(3.84) (gradws, grad x) = (8 y8rad xa) + t*(grad ¥, grad x1 ), Yxa EWh.
4

These problems can be solved sequentially and (3.83) is a Stokes-like prob-
lem using the MINI element of Chapter VI. This approximation has been intro-
duced and studied for ¢ # 0 in BREZZI-FORTIN [A]. Using this decomposition
and Proposition 3.8, recalling that

Irlle = 121l + Iploy m,
and bringing in the regularity result of Proposition 3.6, we have, for t = 0, the
following estimate:

(3-85) {[¥on—oll1+Ipo—Porlosm < ch {[|wo|la+|1boll2+IPoll} < ch llgllo-

From a numerical point of view (3.82)(3.84) can lead to an efficient
method, provided one can dispose of a Stokes solver. O

Remark 3.6: An easy duality argument would also show that we have the
estimate

(3-86) 18y — Byullo + llwo — wonll, < ch? {J|wolls + Iyl m¢divy}- O

To end this example, we rapidly show how the results of Section 124
can be applied to the case t # 0. We consider the error estimate (11.2.48)
from Remark I1.2.13, where we denote V = (H}())? x o), Q =r,
and W = (L*(R2))?. The parameter A is, of course, ¢2 in the present case. It
is easily verified that all conditions are satisfied and that we have, taking into
account regularity properties of Remark 3.3,

18() =B, (DI} + llw @) —wa DI + 1 (t) =, ()1
infly(D) =82 + inf 2|y (1) -8, 2.

Using the decomposition principle and the estimate (3.57) we can find the result
of BREZZI-FORTIN [A]:
16(8) = B @I + [lo(t) — wa()IF + [l$(t) — eaO)]2

+1p(t) = Pa()I5 + ¢ |Ip(t) — pa (D)}

<ch*{[IB)I13 + [w(Oll3 + [l ()13
+ (W + *lp())3},

that is, an O(h) convergence. This result cannot be (much) improved because
of the boundary layer effect already described. O

(3.88)
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The above example is, although interesting, rather remote from the actual
en‘gi‘neering practice in which one tries to stick as closely as possible to the
original formulation. What we have to avoid is a spurious locking of the solution
whenever, for ¢ small, one nearly enforces the condition (grad w — 8) = 0. As
we have seen in Chapter VI, it is not, in general, possible to introduce directly
such a condition in a finite element method.

The most common escape from the troubles that we are facing is to use
some kind of numerical integration for the term At=?||grad w — B||? which
appears in (3.18), thus weakening condition (3.69). A way of formﬁizing it is
the following. We assume that we are given a linear operator r which maps
Hy x W), into (for instance) L%(Q). To fix the ideas, let us consider the possible,
but not recommended, choice:

(3.89) r(1,¢) € £5 and r(n,¢)|x = value of (grad ¢ — )
at the barycenter of K.

Then one minimizes, instead of II; (as in (3.18)), the functional

(3.90) M= 3000 + 2 (8wl - (0,0

T2
on Hy x Wy, This corresponds to the choice
(391) I‘h = T‘(H},, Wh)

and leads to the limit problem (for ¢ = 0): find (B, wh,7,) € Hy x W x ry
such that I

(392) { “(é,,:_’l;,) + (Zhrr(ﬂh)cfl)) - (g)Ch) = O, v(g_h;Ch) € Vh1
(X (B, wn) =0, vy, €T,

We then have implicitly defined, as in Section I1.2.6, a bilinear form
(393) bh({ﬂh,Ch},lh) = (Zh’r(ﬂthh)))

where 7, 1s to be looked for in the range of r(n,,(x). We shall have to
characterize this Space and to analyze B

(3.94) Ker By = {(n,,¢n)Ir(n,,¢a) = 03,

which will enforce 1, = grad ¢, only in a weak sense.
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Theorem 3.2: Let Ker B), be defined by (3.94). If (3.63) holds, the‘n (3.92) has
for a unique solution (B, won). Moreover if (8, wo) is the solution of (3.45)
and (3.46) we have:

(3.95)

c .
12a Bl eomwonlh < {180 =l oo =}

(250 7(n,,¢n)~(grad ¢ —7,))
(n, Cr)eKer By Chlly + Imly

+

)

where ¢ is independent of h and « is given by (3.63) (and, a priori, might
depend on A).

Proof: We have for all (Qh,C;.) € Ker By,

o(lim, = Boullt +11Ch — wonll}) < a(n, - B,,.1, - B,,)
= a(1,~B4,1,~8,,) + By =Bop 1,~Bo)
< limy, = Bylli lln, = 8,11
+ (o1, = Bop) — (9,6 — won).

Moreover,
(Yoo 1, = Bop) = (1903, = By, — 812d (Ch — won)) + (g, h — won),
so that
(Yo = Bop) — (9,¢n — won) = (Ygom, ~ B, — &rad (Cn — won))
= (2911, = Byy, — Brad(¢n — won) + (1, = ByyrCh — won))
and (3.95) follows easily. O

The above result does not require that T', the range of 7’(2,, »Cr), be known
explicitly. On the other hand, it does not yield an estimate on the multiplier Yon
and requires one to build an error estimate in Ker B,. As we knO‘W‘ from the
results of Chapter 11, the cure to this is to suppose an inf-sup condition. From
Section 11.2.6, in particular Proposition 11.2.16 and the remarks that follow, we
have the following result.

Theorem 3.3: If (3.63) holds and if, moreover, bu(-,-) satisfies an inf-sup
condition, that is

‘ (X4 7(1,,Cn))
(3.96) X_:Ielf‘h (n, Ch)EVR ”Kh”r' “(ﬂh’ch)“‘/

Zk0>0’
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then (3.92) has a unique solution (gOh, w‘”"lmx)' Moreover, if (8, wo,:y_o) is
the solution of (3.45) and (3.46), we have

185 = By lli+liwo — wonlly + [ = 24 I
<ef,, it (U8, — Il + llwo — call)

(n, {a)eEVa

+nf 117, = xlir

(397) v e 201,00 = (@ad Gy~ p,))
A Gl + T, I
+ su (Xh’r(-ﬂ-o’wo) ~ (erad wo — éo))} o
X, € I, I

This is nothing but Proposition 11.2.16 using (I11.2.75) and (11.2.76). To be
able to use this estimate we should be able to do some extra work, namely, ,

~— make explicit the space ['y;
— check the inf-sup condition (3.96);
— properly estimate the two consistency terms of 3.97).

Before considering an example where part of this can be done, some re-
marks have to be made.

At least formally, formulation (3.92), for this limit problem, includes all
the previous ones. In particular, any choice of T, in (3.62) can be interpreted
in the form (3.92) by defining

(3.98) (1,¢) = Py(grad ¢ - n); Pa = projection onto T.

However, if one starts with a T, independently assumed, it will usually be
simpler to use directly the approach (3.62) instead of using (3.92) and (3.98).

Let us try to summarize the few results that we have obtained so far. For
any given choice of V, (that is, H), and W),) we have to make a decision on the
treatment of the term A¢~2||grad w — B3 in (3.18). We can choose to introduce
the space T, and to look for the additional variable Y, in T'x (as in (3.61)) or
we may choose to make use of a reduction Operator r as in (3.90). The study
of the discrete kernel is a crucial step in the analysis. Then we have to

— prove that (3.63) holds in Ker By possibly with o independent of &;

— estimat inf - - d ibly the oth
estimate (gh,C)ngerB;.(“go 70l + [Jwo Call1) (and possibly the other
term in (3.95)).

Once this is done, Theorems 3.2 and 3.3 will provide the error estimate. We
recall once more that if (11,,€n) € Ker By, then div Ry, ~ 0 and 7, =~ grad ¢y,
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where Hn = n is a rotation of 7/2 of n as in (3.69). Hence, the analysis of
Ker By, will be, in general, related to some discrete solution of a problem of
Stokes type.

Example 3.3: A “reduced integration” approximation.

We consider now an example of application of formulation (3.92). We assume
that Q is a convex polygon and that we are given a sequence {7} of partitions
of 2 into triangles. We set, with the notation of Chapter III,

(3.99) tHy = (L ® Ba)%; Wi =2}

t

Figure VIL3

One then sees that )y is similar to the Crouzeix—Raviart element of Chapter
VI (Figure VIL.3). We now have to define the operator r. We set

(3.100) Th = {7, |7, € R(RT1)},

where R is, as previously, the «/2 rotation operator. Note that T’y is now an
approximation of Hy(rot; ), whereas RT was an approximation of H(div; ),
and that the tangential components are continuous across the interelement bound-
aries instead of the normal components. Now given n, € Hy, we may consider
its interpolant Iy, = 7, by means of

Gion [, tmdr =0, ¥ € L3,
(3.102) /K(ﬂ" —i,)dz=0, VK €Ty
We are now able to define the operator r by
(3.103) r(n,,¢n) = grad Cx — Tny, € T,
We remark that, using essentially Proposition I11.3.8, one can easily check

that rot 77, is the L?-projection of rot n, onto £9(74). Hence, the kernel of By
as deﬁned in (3.94) is now easily charactenzed as the set of (nh,Ch) such that

(3.104) i), = grad (x,
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(3.105) / (rotn,) gnde =0, Vg € LHT).
9]

Since {17, llo < |lm,ll1,, we clearly have

(3.106) a(m,»m,) 2 e (llm,lle + iCally),  Y(z,.,¢n) € Ker By,
that is, condition (3.63). We can now apply Theorem 3.2 but for this we need a

result for Ker B,,. This is, however, a direct consequence of estimates obtained
in Chapter VI for the Crouzeix—Raviart element and we have

Proposition 3.9: Let B, wo be the solution of (3.45), (3.46) and let Ker B, be
given by (3.104), (3. 105) Then we have

(1184 = m, 1 +llwo — Cally)

<C g_,,ig};h (118, = Bally + llwo — @all)-
PnEW,

(7] Ney )G KCIB
(3.107)

Proof: ﬂ = grad wq and, thus, rot ﬁ = (. From Chapter VI we know that we
can approx1mate it to the right order W1th the Crouzeix—Raviart element by 75

satisfying (3.105). But then 7 7, is equal to grad ¢, and the result follows from
the continuity of the operator H;, a

To apply Theorem 3.2, we must, however, also bound the consistency term
of (3.95) that is given by

(75> 7(1,,Cn) — (grad {n — 1,))

(3.108)
(n, (h)EVA Cnlls + iyl

In the present case we have

(3.109) (20, 7(1m, ¢a) — (grad ¢a = m,)) = (74,1, ~ Man, ).
Using (3.102), we also see that we can write for any 1,

(3.110) (lu’ﬂh_n"ﬂh) = (lO_Z)’gh_Hhﬂh)’

where ¥ is the projection of ¥, onto (£3)?. From (3.110) we obtain

(2pm, = Mam,) < inf iy, = T, llollm, — Mg, llo
(3111) 0 2h 10 a)a L0 L0 Zh ~Lh

< ek flyglliczh (Ig, s,
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so that finally we have

(3.112) sup (go(n,,¢n) — (grad ¢ — 1))

< ek (v, lh-
(1, Cn)EVA (ISl + 17, 11 =0

Now to finish our error estimate we have to consider the approximation
errors involved in (3.107). There are two of them and they are straightforward
from the results of Chapter I1I. Indeed we can immediately write

(3.113) (o, x5y, (1o = 2yl - lhwo = Cally) < ch® (Jlwolls + 1|8, ls)
< ch? |8, lls-

We can therefore summarize the previous results in

Theorem 3.4; Let (B> wo) be the solution of (3.45), (3:46) and (8, , wox) be
the solution of (3.92) obtained by (3.99)(3.103). We then have

”_5_0 = Boullt + llwo — won|ly

(3.114)
< Cik? (lwolls + 18, ]la) + Cob? fly II; O

As we already noted, this estimate is overoptimistic because it ignores the bound-
ary layer effects. From the results of ARNOLD-FALK [C] an O(A%/2) conver-
gence rate should be expected.

Remark 3.7: Similar estimates have been obtained in BATHE-BREZZI-
FORTIN [A] for the presently discussed element and related ones, including
clements defined on quadrilaterals. More refined estimates can be found in
BREZZI-FORTIN-STENBERG [A]. O

Remark 3.8: The choice of second-order accuracy has been done only for the
sake of simplicity. Higher-order element are possible and we shall indicate at
the end of this chapter a general framework within which they could be built.
On the contrary, lower-order elements are more difficult to get; see, for instance,
BATHE-BREZZI [A] for the convergence analysis of a similar method, which is
only O(k) accurate (HUGHES-TEZDUYAR [A], BATHE-DVORKIN [A]). We
also refer to BATHE-BREZZI [A], BREZZI-FORTIN [A], ARNOLD-FALK
[B] and PITKARANTA [A] for other examples. 0

Remark 3.9: 1t is possible to use a duality argument to get an O(h3) estimate
for |18, = Boullo and [[wo — won|o. See BREZZI-FORTIN-STENBERG [Al.O
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The above result, although interesting, still leaves part of the question
unanswered as we have no estimate on the shear stress V- Moreover, we

would like to be able to check that we indeed have an uniform bound in £ > 0.
Theorem 3.3 would be a first step in that direction and we, therefore, should try

In ort.ier to do so, we shall need to use the following result on the structure
of T's, which is in fact nothing but the discrete analogue of Proposition 3.4.

Proposition 3.10: For any vy, € Ty, there exists ¢, ¢ £in H3(Q) = W), and
pr € £Y/IR = Q4 such that

(3.115) (2 8n)o = (grad $h,85) + (pn, 1ot §,), V8, € Ty.

Proof: Given ¥, We solve in Ty a mixed problem similar to those studied in
Chapter V, namely,

(3.116) (@h, 84) ~ (pa, ot 6,) = 0, V8, €Ty,
(rot Qo qn) = (rot Zh,qh), Yan € Qy.

In fact, this is a “m/2 rotation” of the problem of Chapter V and we can find
@y and py (up to an additjve constant) solution of this problem. Now, rot(y, —

@) = 0 and Corollary II1.3.2 enabjes us to write ¥, — v, = prad vhi
completes the proof. O Ty — 2y = grad ¢n, which

This result will later lead us to a decompositi inci
position principle analogous to
(3.82)(3.84). But we shall first proceed to prove

Proposition 3.11: The operator r defined by (3.103) is surjective on I';,. Given
Y5 € T'a, one can find éh € Hy, and w,, € Wy with

(3.117) {r(ﬁh’w”) =2
I8N+ Thealls < e Wy, flo + lirot 4, 1o) < 2 a6 crot )

with a constant ¢ independent of 4.

Proof: Given Y,» we first solve a “Stokes-like” problem: find (éh,lc;.) €

Hy x Qp such that

(3118) {a(—ﬂ-h’gﬁ) - (]Ch,I'Ot Qh) = 07 Vgh € Hh;

(I'Ot éh’ QA) = (I'Ot Zh’q}‘)’ th S Qh-
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The couple Hy x Qy is the Crouzeix~Raviart element for Stokes problem. This
makes (3.118) well posed and there exists a unique J3, . It satisfies

(3.119) 18,ls < e llraty, llo
and
(3.120) rot(Ilx 3, ) = rot y,,.

Thus, rot('yh Mg, ) = 0 and we can find (again from Corollary I11.3.2)
wy, € W}, such that % H;,ﬂ = grad wy. In fact, wy can be obtained by
solving the discrete Dmchlet problem

(grad wa,grad ¢a) = (7, — a B, ,grad é5),  Von € Wh.
From this, (3.119), and continuity of II;, we get (3.117). 0

But now we have, in fact, proved a weak form of the inf-sup condition for
it comes from Proposition 3.11 that B coincides with the operator r. What we
have obtained is, in fact,

(7)‘91-1'!7)’1 - g!g-d wh)
(3.121) sup = =~ d
(n, wnyeva 1Ta7, — grad wallHy(ror0)

2 konlhllr‘;_n

where the norm ||y, {Ir: is the discrete dual norm

(vprm,)

3.122 » T [EAERS)
( ) ”lh”rh Er‘h “nhllffo(\'ot Q)

To apply Theorem 3.3, we would need (3.121) to hold with

(1,1

T 2 Iy,
lanc(l’Ot ) —hT0a

llz,lle = sup

We are thus slightly short of an optimal result. The intuitive reason is that 7y,
cannot be written y, = grad ¢y + rot ps but only as grad ¥ + 10t, pa where
rot, is a discrete rotatlonal operator as in (3.115).

On the other hand, 7, (as any other element of Ho(rot, £2)) can be written
as

(3.123) 7, = grad ¢ + rot
and (see (3.49))

(3.124) 2, e 2 1911+ 1Blloy s
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whereas from (3.115) and (3.122) we easily get

(3.125) e = Nénlls + lioalloy m-

We shall now try to get an estimate on ¢, and pn and for this, we are led to
introduce a decomposition principle analogous to (3.82)~(3.84). This will, of
course, be based on Proposition 3.10. We consider now the full case ¢ # 0 and
we start from (3.90) which we rewrite as

-2

(3.126) @. )EV 2 a(8,.8, )+ |g_d wy — Mg, ? — (g,wn),

where 8, and wy are chosen as in Example 3.3 and I, is again defined by
(3.101) and (3.102). Note that, for the sake of simplicity we set A = 1. The
optimality conditions for the problem are

(3.127) a(8,,n,) —t~*(grad wy — WaB,,n,) =0, ¥y, € Hy,
(3.128) t™?(grad wy — Wpf, , grad ¢1) = (g, ), Yén € Wa.

Denoting ¥, =t 2(grad wy, — .3 ) and recalling that grad wy, — II;.ﬁ
surjective on I';, this becomes equwalent to

(3129)  a(B,,n,) - (3,,1an,) =0,  Vn, € Hy,
(3130)  (y,.erad ¢n) = (9,9n),  Vén € Wi,
G131)  (7,,4x) =t *(grad wa — Waf, ,6,), V&, €T

Now from Proposition 3.10 we can decompose 7, into two components,
(3132) (Zh’éh) = (gﬁd wh)éh) + (phert éh)r véh € I‘h’
with ¥, € W), py € Q. From (3.130), we now have

(3.133) (grad +y, grad ¢a) = (g, é1), Yén € Wh,

so that ¢y is immediately known. Now we insert (3.132) into (3.129), recalling
that (rot an,,q4) = (rot N, 48), Ygn € Q. This gives

(3134) a’(_ﬁ_hlﬂh) - (Ph, TO‘Q’.) = (gﬂd 2% H}‘Qh)'

We still have to manage with (3.131). First let us take §, = grad ¢». We then
get

(grad wy, grad ¢n) = (T1n 3, , grad éa) + t*(grad s, grad ¢)

3.135
( ) :(Hhéh,g@d ¢h)+t2(gx¢h)
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This makes it possible to compute wy, whenever 8, is known. Finally we take
&, in the orthogonal of grad W,. We have in (3.131) from (3.132)

(3.136) (pn, 10t 8,) = t72(Iaf,,8,), V& € (grad Wa)™.

Let now a; be the element of 'y, defined by

(3.137) (an,8n) = (pn,101 83), V8, €T,

then (3.136) can be written as

(3.138) (an,8p) = ~t73(MnB,,8,), V8, € (grad Wi)*.

But for §, & (grad Wy)*, there exists g5 € Qs such that

(3.139) (8prx,) = (gn, 1ot x,),  Vx, € (grad Wa)*,

and (3.138) then becomes (using again (rot Ix1, ,qn) = (10t B, ,95), Ygn)
(3.140) (rot @y, qn) =t~ *(rot Brian), Yau € Qn.

We can summarize this in

Proposition 3.11: Using the hypotheses of Theorem 3.4, the solution
(B h Why Y h) of problem (3.129)~(3.131) can be found by solving the following
problem:find (éh,wh,w;,,ph,g_h) in Hy x Wy x Wy x Qn x 'y such that,

(3.141)  (grad ¥, grad ¢x) = (g, és), Vén € Wi,
(3.142) a(B,,n,) — (pa, 10t n,) = (grad ¥, Mxy, ), v, € Hi,
(3.143) (rot B, ,qn) + t3(rot ay,qn) = 0, Vg € Qh,
(3.144) (v, 84) — (pn,10t §,) =0, Vo, € T,

(3.145)  (grad wp, grad ¢) = (Mnf,, grad ¢a) +1%(g,4»), Vén € Wi

and setting
(3.146) 7, = grad ¥n + a,,. O

Now (3.141) is a standard Dirichlet problem and for ¢t = 0, (3.142), (3.143)
is a “Stokes problem” discretized by the Crouzeix—Raviart element (Chapter VI).
Again one must emphasize the relations between Stokes problem and Mindlin’s
problem. For t # 0 we have on the right-hand side of (3.143) and in (3.144)
a mixed formulation of the Neumann problem using the Raviart~Thomas ele-
ment. This could be brought to a more computable form using the “ A-trick” of
Chapter V. However, in opposition with the situation of Example 3.2, where the
decomposition principle (3.82)-(3.84) was the only way to solve the problem,
it is now more suitable from a computational point of view to use (3.127) and
(3.128). Formulation (3.141), (3.142) however makes it possible to easily refine
the error estimate of (3.114). Following BREZZI-FORTIN-STENBERG [A]
(see also PEISKER-BRAESS [A]) we now prove the following theorem.

At e
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Theorem 3.5: Let (4(t), w(t) and (%) be the solution of (3.24), (3.25), let
¥(t) and p(t) be defined by Proposition 3.4 (see (3.48)), and set

(3.147) a(t) =rot p(t).

Let éh(?),wh(t),¢h(t),ph(t),gh(t) be the solution of (3.141)—(3.145). Then
there exist two constants ¢,e; > 0 independent of h and ¢ such that

18, (=B + [fwa (B)—w()il + |)wa(t)~ ()],
F len (O ~pllosm + tllas () —a(@)|o
SC{Ligghllé(t)—g,,ﬂﬁchiggh llw(i)—Chthrmig;"vh ()= éallx
+ 0nf Np(O—-gnllosm +gf’e’fm tHla(t)=8allo + [18—T048]J0

4 sup (grady(t), n, ~Mxy,)
n, €Hy ln, I

< Ok {IB(Osss + 0Oles + 6O es1 + Bo(Oll/
+lla oIl }

for every s € [0,2].

(3.148) 4

Proof: We remark first that B(t), w(t), ¥(t), p(t), a(t) is a solution of

(3.149) (grad ¥, grad 6) = (g,9), Vo € HI(D),

(3.150) a(f,m) — (p,rot n) = (grad ¥,9), Yy e (HL(Q))?,
(3.151) —(rot B,q) — *(rot @, ) = 0, Vg € L}(Q),

(3.152) (2,8) = (p,rot §) =0, V& € Ho(ro; ),

(3.153) (grad w, grad ¢) = (f, grad ¢) + t*(g, ¢), V4 € HA().

« I .
We now look for funcnon; (B wh ¥, phyak) in Hy x Wi x Wy x Qa xTa
close to (§,w, ¥, p, a). For this we set first

(3.154) (srad ), grad ¢n) = (g,68), Ve € W,
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that is, actually, ¥1 = 1. Then we consider the solution (_;8_)1l , B ) of the discrete
Stokes-like problem

(3.155)
(3.156)

ao(B;,n,) + (Bh, rot ) =a(B,n,),  Vn, € H,
(rot 81, qn) = (ot B, qn), Vg € Qn

Since the pair (Hyx,Qs) is a stable pair for Stokes problem (see Chapter VI)
we shall have that _ﬁ_{‘ is an optimal approximation of §. Now we consider the

mixed problem: find (af,p}) € T'» x Qa such that

(3.157)
(3.158)

th thr
V_é_h e Fh.

(rot BL,qn) + t*(rot of, ) = 0,
(g{néh) - (p{HrOt Qh) = 0’

Note that, from (3.156), (af,p}) will be the mixed finite element solution
of @ = rot pand rot & = £ %rot £ and hence an optimal approximation of
(a,p). Finally we can solve

(3.159)  (grad wf,grad ¢x) = (TIn g3, grad ¢n) + (9, é4), Vén € Wa

Let us look now at the difference (8, — _ﬂ_i, , a0 — ah). Tt is a solution

of

(3.160) (grad(vpn — ¥4), grad 1) =0,  Vgu € Wi

(3161) a(_ﬂ_h—_ﬁ_:’ﬂh) - (ph’—p)IUTOtﬂh) = ﬂ(g—gi’ﬂh) - (p'—p{'nrot_r_’_h)

— (grad 9,7, ~Ta7, ) + (grad (¥n — ¥),Man, ), Vn, € Hy,
(3.162) (rot(3, — [3_{‘), gn) + t3(rot(ay — ah), gn) = 0, Ygn € @,
(3163) (g—h - g{néh) - (ph - p{n rot éh) =0, V‘_S.h € I,

(3.164) (grad(ws — wj), grad ¢4) = (M8, — MaB,81ad ¢4 ), Yéu € Wi.

From (3.160) we have again v, = v]. This easily implies

(3.165) o = ¢l < inf 1 — éalls-

Now we take ), = 8, ﬁ in (3.161), ¢» = pr—pl in (3.162), §,, = t*(a,—a})
in (3.163), and we sum the three equations. We obtain

18,~BLIE + *llen~adlis < {1881 s + lp—Phllosm

ady,n, —1I
4 sup (grad v, 7, ~an, )
1, lim, Il

(3.166)

+ 11 =nlla P18, = Ball

‘
[N

b dw e e
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Using now the triangle inequality, the optimality of the solutions of (3.155),
(3.156) and (3.157), (3.158) and (3.165) we have

i8-8 “1<Cs{ inf B =yl + inf llp~axllosr

(3.167) (erad v fn)
. gra 77, — Upm
4+ inf - + su = =h” S
PLEW, “d) ¢h“1 _'b.eg" ”ﬂ,.”l }
tian = ollo < Ca inf, 18,01+ izt llp— aullorm
(3.168) + m’é’vah 1% — éalls + iﬁlglf,htllgz—éhllo
dy,n, ~1I
+ sup (grad ¥, 1, hg,,)}
EhEHh ”Z]_;‘Hl

Using now the inf-sup condition for Stokes problems in (3.161) (and again the
triangle inequality) we have from (3.161) and the previous estimates

flp ~ Ph||0/R<C5{ inf I8 - "h”1+ inf e = anllor

(3.169)

(&_dtl) 7
+ il ¢~ ¢ally + sup =h
ol 10 = ol 0, €y il

HW,,)}

Finally from the approximation properties of Dirichlet problem for the
Laplace operator we have, from (3.164),

(3.170) {lw — walls < C's{%igvah llw = @allL + 116 — IIaBllo + 116 - ghlll}

Collecting (3.166)~(3.170) we have that (3.148) follows from known approxi-
mation properties, bounding the consistency term (with the sup) as in (3.110)-
(3.112).0

Remark 3.10: If the triangulation is quasi-uniform (see, e.g., CTARLET [AD
we can use an inverse inequality in (3.163) and obtain

(3.171) llan — aillo < ch™" |lps — phllo,

which, in turn, produces a bound for hila — a,||o similar to (3.148). O
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Remark 3.11: From Theorem 3.5 we have optimal error estimates for the
variable § and w. As far as 7 is concerned, we have, on the one hand, optimal
error bounds in the norm (3.1_25). On the other hand, the estimates on ¢ and o
give an estimate for £ ||y — 7, |lo and for (2 + h){|y — 7, {lo for quasi uniform
meshes. It is not clear whether the (natural) norm in IV (see (3.42) or (3.49)) is
equivalent to (3.125) or not. O

Now to end this lengthy section, we are in a position to present general
guidelines for the discretization of Mindlin—Reissner problems.

‘We must emphasize again that the decomposition principle makes apparent
a direct link with the Stokes problem. Indeed, all examples for which a satis-
factory analysis could be achieved contained an already proven Stokes element.
If we distinguish the case of continuous pressure approximation and the case of
discontinuous pressure element, we get two types of strategies.

VII1.3.3 Continuous pressure approximations

— Suppose one knows Hj; x @ to be a good approximation of the Stokes
problem with @ C H'(1).

— Choose W), an approximation of H}(S?) of the same order of accuracy.
— Write T'), = grad Wy, + rot Q.

In this context, the definition of ', does not lead, in general, to a standard
space and the decomposition principle (3.82)~(3.84) is the only way to handle
things from a computational point of view. It may, however happen, for a
clever choice of W, and Qy, that I';, turns out to be a standard polynomial
space. Such a situation has been encountered in ARNOLD~FALK [B] where,
using for Hy x @y the MINI element as in Example 3.2, but taking W) to be
£1NC that is, a nonconforming Py approximation of HE(S2), T's comes to be
the whole space (£3)? and not a proper subspace as in Example 3.2, No such
construction is known (at the time we write this) to extend this result to (£7)?
or to larger spaces.

VII.3.4 Discontinuous pressure elements

This second class of approximations to the Stokes problem has been the basis for
the “reduced integration” method of Example 3.4. We shall try to outline here
the principal features of this example in order to provide a guide for possible
extensions, some of which can be found in BATHE-BREZZI-FORTIN [A].

(1) Here again our starting point is an approximation of the Stokes problem
Hy x Qn, Qn being a space of discontinous polynomial functions. This
approximation should, of course, satisfy the inf-sup condition.

(2) We need to match this with an approximation T'y, of Hy(rot;$2). More
precisely we need a couple of spaces (T's, @x) (Where @y is the same as
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before) and a uniformly bounded linear operator I, — I'; such that we
have the commuting diagram:

H _r_m_.> L2(Q)

N

ot
Th —— @,

where H = (H(Q))* N Ho (rot; ) and Py is the L? -projection operator.
(3) We finally need a space Wy, C H{(Q) such that

grad Wi = {§, € Ty, rot §, = 0}.

I{]gredients (1), (2), (3) will produce a plate element for which one can
essentially repeat the proof of Theorem 3.5 and obtain optimal error estimates
for 8, and w, and for 5 (in the norm (3.125)).
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A
Adini’s element, 273
Admissible discretizations, 259-260
Affine elements, 107-108, 226
Affine finite elements, 104-105
Approximations

external, 110-111

internal, 102

non polynomial, 114
Argyris’ triangle, 107
Arnold-Douglas-Gupta families, 295
Aubin-Nitsche duality technique, 72

B
Babuska-Brezzi condition, 58
Barycentric coordinate, 117
Basis function, 271-272
Beam problems, 302
Bending moments, 22
Bibliography, 326-344
Biharmonic problem, 65, 166
decomposition of, 20-21
Bilinear form, 46
duality methods for, 23
Bilinear velocity-constant pressure
elements, 242-248
Block diagonal matrix, 182-183
Boundary conditions
Dirichlet, 144, 196
homogeneous, 206-207
non-homogeneous, 206
Bramble-Hilbert lemma, 108
Brezzi-Douglas-Fortin-Marini space,
121
Bubtle functions, 110
adding, 215

C

Checkerboard pressure modes, 230,
231

Clement’s operator, 223

Coercive bilinear form, 23

Coercive form, 3
Coerciveness, 64
inf-sup condition and, 201
Commuting diagram property, 133
Complementary energy, 20
Complementary energy principle, 18
Composite quadrilateral elements, 232
Condition number, 89
Conforming elements, 272-273
standard, 104
Conforming methods, 102-110
Conjugate function, 13
Consistency error, 267
Consistency terms, 69
Constitutive law, 9-10
Constrained minimization problem,
268-269
Constraint ratio, 207-208
Continuous bilinear form, 23
Continuous boundary, Lipschitz, 4,
5, 257
Continuous functions, 102
Continuous interpolate, 17
Continuous lifting, 40
uniformly, 59
Continuous operator, 264
Continuous pressure approximations,
324
Continuous pressure elements
stability of, 226-227
stable, 215-216
Convergence rate, 302
Cenvex function, 13
Corner forces, 169
Creeping flow problem, see Stokes
problem
Cross-grid divergence-free elements,
241
Cross-grid elements, 210, 231-233
Crouzeix-Raviart elements, 213-215
stability proof for, 224-225
for Stokes problem, 317

Index 345

Stokes problem discretized by,
320
Cubes, mesh of, 208
Curl, 120
Curl operation, discrete, 273

D
Decomposition principle, 307-309
Deviatoric, 8
Dirac measures, 281
Dirichlet boundary conditions, 144,196
Dirichlet conditions, non-homogeneous,
17
Dirichlet problem, 6
discrete, 309
domain decomposition for, 45
domain decomposition method
for, 25-26
dual, weak form of, 18-20
dualization of, 17-18
mixed finite element methods
for,139-144
mixed formulation of, 44
non-standard methods for,
137-158
Discontinuous pressure elements,
324-325
stability of, 227-228
Discrete curl operation, 273
Discrete Dirichlet problem, 309
Discrete divergence operator,
205-206
Discrete stream functions, 268-274
Discretization methods, 33
Discretizations
admissible, 259-260
of Mindlin-Reissner problems,
323.325
stable, of Stokes problem,
158-162
Divergence-free approximations,
211-212
Divergence-free condition, 14
Divergence-free elements, cross-grid,
241

Divergence-free subspaces, 269
Divergence-free vectors, 120
Divergence operator, 212
discrete, 205-206
standard, 206
Domain, partition of, 3
Domain decomposition method, 138
for Dirichlet problem,
25-26, 45
dual problem of, 27
Dual Formulation problem, 38
Dual hybrid methods, 28, 153-158
for plate bending problems,
169-178
Dual norm, 93
Dual problem, 13
discrete form of, 76
of domain decomposition
method, 27
for Stokes problem, 15-16
Duality methods, 12-23
for nearly imcompressible
elasticity, 16-17
for non-symmetric bilinear
forms, 23
Dualization
of Dirichlet problem, 17-18
for linear elasticity problem, 20

E

Eigenvalue problem, inf-sup
condition and, 77-80

Elastic body, three-dimensional,
296-297

Elasticity

Hellan-Hermann-Johnson method

in, 28-30
linear, 7-10
nearly incompressible, 259-268
Elasticity problems, 12, 162-165
linear, see Linear elasticity
problems
Elements, 96; see also Pressure
elements
Adini’s, 273
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Index

affine, 107-108, 226

bilinear velocity-constant,
242-248

choice of, 202

conforming, see Conforming
elements

cross-grid, 210, 231-233

cross-grid divergence-free, 241

Crouzeix-Raviart, see Crouzeix-
Raviart elements

finite, see Finite elements

Hermite type, 104, 106-107

for incompressible materials,
208-221

inequality for, 114-115

isoparametric triangular, 105

Lagrange type, 104

macro-elements, see Macro-element
entries

MINI, see MINI elements

Morley, 283

non-conforming, 218-219,
270-272

quadrilateral, see Quadrilateral
elements

Raviart-Thomas, 320

reference, 98

second-order, 219

shape of, 108

Taylor-Hood, see Taylor-Hood
elements

three-dimensional, 219-221

Union-Jack, 241-242

Elliptic problems, linear, mixed

finite element method for,
179-201

Ellipticity, 53
Energy functional, 2
Equal interpolation methods, 209,

212-213

Equilibrium condition, 3
Equilibrium methods, 138
Error analysis for interelement

multipliers, 186-194

Error estimates, 194-195

Exponential fitting method, 198
External approximations, 110-111

F
Family of triangulations, 109
Finite element method, 1
Finite elements
affine, 104-105
defining, 3
mixed methods for, see Mixed
finite element methods
serendipity, 106
Flow problems, incompressible ma-
terials and, 202-275
Fourth-order problem, mixed, 166-
168
Function space, see Functional
spaces
Functional spaces, 3, 92-135
finite element approximations
of, 102-115
partitioning, 96-98
properties of, 4-6

G

Galerkin’s method, 3

Generalized Taylor-Hood elements,
253-259

Global pressure modes, 232

Gradient method, 253

Green operator, 16

Green’s formula, 94-95

H

Hellan-Hermann-Johnson method,
28-30

Hermite type elements, 104,
106-107

Higher order methods, 229-230

Homogeneous boundary conditions,
206-207

Hood elements, see Taylor-Hood
elements

Hybrid methods, 24-30, 138

dual, see Dual hybrid

methods

primal, see Primal hybrid
methods

I
Incompressibility condition, 10
Incompressible elasticity, nearly,
259-268
duality method for, 16-17
Incompressible flow, viscous, Stokes
problem for, 10
Incompressible materials
almost, 203
elements for, 208-221; see also
Elements
flow problems and, 202-275
Inequality for elements,
114-115
Inexact integration effects, 264-268
inf-sup condition, 58-62
checking, 209
coerciveness and, 201
continuous, 60
discrete, 60, 155
eigenvalue problem and, 77-80
importance of, 80-82
standard techniques of proof for,
221-230
for Stokes problem, 323
Injectivity, 53
Integration effects, inexact, 264-268
Integration methods, reduced,
260-264
Interelement multipliers, 180-183
error analysis for, 186-194
Internal approximations, 102
Internal nodes, 237
choice of, 238
Interpolate, 107
Interpolation operator, 127, 221
Interpolation spaces, 5
Invertibility, 43
Isoparametric quadrilateral
elements,105-106
Isoparametric triangular elements,
105
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J
Jacobians, 261-263
Jump, 29, 169

K
Kernel, 38

characterizing, 206
Kernels property, 285
Korn’s inequality, 162, 298

L

Lagrange multiplier, 26

Lagrange type elements, 104

Lagrangian algorithm, augmented, 90

Lamé coefficients, 9

Lax-Milgram theorem, 38, 162

Linear constraints, quadratic probs
lems under, 38-45

Linear continuous operator, 38

Linear elasticity, 7-10

Linear elasticity problems, 162-165

dualization for, 20
mixed methods for, 284-296

Linear thin plates, mixed methods
for, 276-284

Lipschitz continuous boundary, 4
5, 257

Local pressure modes, 232, 235-236

Locking mechanism, 204

Locking phenomenon, 81, 208, 210

M
MAC cells, 126, 274
Macro-element techniques, 230-253,
237-241
Macro-elements, 210
Matrix form of discrete problem,
75-76
Mesh
of cubes, 208
quasi-uniform, 250
rectangular, 208, 251-252
of triangles, 208
Mindlin model, 297
Mindlin-Reissner plates, 296-325
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Mindlin-Reissner problems,
discretization of, 323-325
MINI elements, 215-216, 219
stability proof for, 225-226
Minimization problem, 6
constrained, 268-269
Mixed approach, truly, 163-164
Mixed finite element methods, 138
for Dirichlet’s problem, 139-144
for linear elliptic problems,
179-21
for semi-conductor devices,
196-198
Mixed formulation, 20
of Dirichlet problem, 44
Mixed Formulation problem, 137-
138
Mixed fourth-order problem,
166-168
Mixed methods
for finite elements, see Mixed
finite element methods
for linear elasticity problems,
284-296
for linear thin plates, 276-284
penalty methods and, 202, 204
Mixed type problem, 6
Stokes problem as, 204-208
Moderately thick plates, 296-325
Morley elements, 283
Morley’s triangle, 113, 270
Multiplier(s)
interelement, see Inté¢relement
multipliers
Lagrange, 26

N

Natural boundary conditions, 11
Natural norms, 194

Navier-Stokes equation, 274
Nearly incompressible elasticity, see

Incompressible elasticity, nearly

Neumann boundary conditions, 196
Neumann conditions, 19
Neumann problem, 7

using Raviart-Thomas elements,
320
variational, 93
Non-conforming elements, 218-219,
270-272
Non-conforming methods, 67,
110-113
Non-homogeneous boundary condj-
tions, 206
Non-homogeneous Dirichiet
conditions, 178
Non polynomial approximations, 114
Normal trace, 18
Numerical integration concept, 67
Numerical quadrature formula,
260-261

0]
Optimality, 111
Oscillations, appearance of, 249

P
Particular solutions, 170
Partition of domain, 3
Patch-test, 111, 208, 240
Penalty methods
mixed methods and, 202, 204
solution by, 83-89
stabilization by, 88-89
standard, 90
Penalty term, 84
exact evaluation of, 260
Piola’s transformation, 100
Poincaré inequality, 6
Point values, 104
Polynomial spaces, 103
Pressure, in Stokes problem, 13-15
Pressure approximations, continuous,
324
Pressure elements, see also Elements
bilinear, velocity-constant,
242-248
continuous, see Continuous pres-
sure elements

discontinuous, see Discontiny-
Ous pressure elemenis

Pressure modes, 247

checkerboard, 230, 231

global, 232

local, 232, 235-236

Spurious, 200, 212, 230-233
Primal Formulation problem, 137
Primal hybrid methods, 144-152

simplest case of, 148-149

Q
Quadratic problems under linear con-
straints, 38-45
Quadrature €rrors, estimating,
267-268
Quadrature formula, numerical,
260-261
Quadrilatera] elements, 217-218
composite, 232
isoparametric, 105-106
Quasi-uniform mesh, 250
Quasi-uniform triangulation, 323

R
Raviart-Thomas elements, Neumann
problem using, 320

Raviart-Thomas Space, 121

Rectangular approximations, 211

Rectangular mesh, 208, 251-252

Reduced integration approximation,
313-314

Reduced integration methods,
260-264

Reference elements, 98

Regularity results, 7

Rigid modes, 178

Ritz’s method, 2

S
Saddle point, 21
Saddle point condition, 3

Saddle point problems, 37.91

approximation of, 52-74

discrete, numerical properties of,
75-82

349

dual error estimates for, 72-74
error estimates for, 55-59
existence and uniqueness of
solutions for, 37-52
extensions of error estimates for,
62-64
generalizations of error estimates
for, 64-66
iterative solutjon methods,
89-90
perturbations of, 67-71
solution by penalty methods,
83-89
Scaling arguments, 114-115
Second-order elements, 219
Semi-conductor devices, mixed
finite element methods
for, 196-198
Semi-norm, 66
Serendipity finite elements, 106
Shape of elements, 108
Sharfetter-Gummel method, 198
Simple functions, 3
Singular value, generalized, 77
Singular valye problem, generalized,
78
Slotboom variable, 196
Smoothing Post-processors, 194
Sobolev Spaces, 4-5, 92.94
of fractional order, 5
Spaces, 114
functional, see Functional Spaces
interpolation, §
polynomial, 103
Spurious pressure modes, 200, 212,
230-233
Stabilization by penalty methods,
88-89
Stabilization procedures, 248-253
Stable continuous pressure elements,
215-216
Standard conforming elements, 104
Standard divergence Operator, 206
Static condensation, 183
Stokes nroblem, 43-44, 203
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approximating, 204
Crouzeix-Raviart elements for,
317
discretized by Crouzeix-Raviart
elements, 320
dual problem for, 15-16
inf-sup condition for, 323
as mixed problem, 204-208
pressure in, 13-15
specificity of, 202
stable discretizations of,
158-162
for viscous incompressible flow,
10
Strang’s lemma, 111
Stream-function, 120
discrete, 268-274
Subspaces, 97
divergence-free, 269
Superconvergence property, 66
Surjective trace operator, 95-96
Surjectivity, 53

T
Tangential components, 314
Taylor-Hood elements, 213, 240
generalized, 253-259
Thin clamped plate problem, 10-11
Thin plate bending problem
decomposition of, 21-22
dual hybrid methods for,
169-178
Thin plates, linear, mixed methods
for, 276-284
Three-dimensional elastic body,
296-297
Three-dimensional elements, 219-221

Trace operator, 94
surjective, 95-96
Trace(s)
of functions, 5
normal, 18
Transmission problem, 24-25
Transposition methods, 33-35
Triangles, mesh of, 208
Triangular elements, isoparametric,
105
Triangulation(s)
family of, 109
quasi-uniform, 323
Truly mixed approach, 163-164

U
Union-Jack elements, 241-242
Uzawa'’s algorithm, 89-90

v
Variational equations, 2, 203
augmented, 30-33

Variational Neumann problem, 93

Variational principle, 3

Velocity-constant pressure elements,
bilinear, 42-248

Velocity-pressure approximations, 204

Verfurth’s trick, 256-259

Viscous incompressible flow, Stokes
problem for, 10

A%
Wave functions, 266

zZ
Zero eigenvalues, 78
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